基于LiDAR数据融合的高光谱图像语义分割

Hakan Aytaylan, S. E. Yüksel
{"title":"基于LiDAR数据融合的高光谱图像语义分割","authors":"Hakan Aytaylan, S. E. Yüksel","doi":"10.1109/IGARSS.2016.7729651","DOIUrl":null,"url":null,"abstract":"Semantic segmentation is an emerging field in the computer vision community where one can segment and label an object all at once. In this paper, we propose a semantic segmentation algorithm that takes into account both the hyperspectral images and the LiDAR data. In our segmentation framework, we propose a new energy function that is composed of two terms: a unary energy term and a pairwise energy term. The unary energy term provides the segmentation maps for the hyperspectral data as well as for the LiDAR data which is explained with Fisher Vectors. The pairwise spatial term uses both the UTM coordinates as well as the LiDAR data. Finally, the system is solved with graph-cuts. We report the effect of the parameters in energy minimization and show that the best results are achieved with an SVM-MRF classifier among the several classifiers.","PeriodicalId":179622,"journal":{"name":"2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Semantic segmentation of hyperspectral images with the fusion of LiDAR data\",\"authors\":\"Hakan Aytaylan, S. E. Yüksel\",\"doi\":\"10.1109/IGARSS.2016.7729651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semantic segmentation is an emerging field in the computer vision community where one can segment and label an object all at once. In this paper, we propose a semantic segmentation algorithm that takes into account both the hyperspectral images and the LiDAR data. In our segmentation framework, we propose a new energy function that is composed of two terms: a unary energy term and a pairwise energy term. The unary energy term provides the segmentation maps for the hyperspectral data as well as for the LiDAR data which is explained with Fisher Vectors. The pairwise spatial term uses both the UTM coordinates as well as the LiDAR data. Finally, the system is solved with graph-cuts. We report the effect of the parameters in energy minimization and show that the best results are achieved with an SVM-MRF classifier among the several classifiers.\",\"PeriodicalId\":179622,\"journal\":{\"name\":\"2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2016.7729651\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2016.7729651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

语义分割是计算机视觉领域的一个新兴领域,人们可以同时对一个对象进行分割和标记。本文提出了一种同时考虑高光谱图像和激光雷达数据的语义分割算法。在我们的分割框架中,我们提出了一个新的能量函数,它由两个项组成:一个一元能量项和一个两两能量项。一元能量项提供了高光谱数据和激光雷达数据的分割图,这是用Fisher矢量解释的。两两空间项同时使用UTM坐标和LiDAR数据。最后,采用图切法对系统进行求解。我们报告了参数对能量最小化的影响,并表明在几种分类器中,SVM-MRF分类器取得了最好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semantic segmentation of hyperspectral images with the fusion of LiDAR data
Semantic segmentation is an emerging field in the computer vision community where one can segment and label an object all at once. In this paper, we propose a semantic segmentation algorithm that takes into account both the hyperspectral images and the LiDAR data. In our segmentation framework, we propose a new energy function that is composed of two terms: a unary energy term and a pairwise energy term. The unary energy term provides the segmentation maps for the hyperspectral data as well as for the LiDAR data which is explained with Fisher Vectors. The pairwise spatial term uses both the UTM coordinates as well as the LiDAR data. Finally, the system is solved with graph-cuts. We report the effect of the parameters in energy minimization and show that the best results are achieved with an SVM-MRF classifier among the several classifiers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信