Manish K. Assudani, Neeraj Sahu, Arulmozhi, A. Saravanan, K. Dhinakaran, Ashok Kumar
{"title":"基于深度学习的x射线图像COVID-19检测","authors":"Manish K. Assudani, Neeraj Sahu, Arulmozhi, A. Saravanan, K. Dhinakaran, Ashok Kumar","doi":"10.1109/ICIPTM57143.2023.10117823","DOIUrl":null,"url":null,"abstract":"COVID-19 is one of the threats that came out of nowhere and literally shook the entire world. Various prediction techniques have been invented in a very short time. This study also develops a Deep Learning (DL) model which can predict the presence of COVID-19 and pneumonia by analyzing the X-ray images of human lungs. From Kaggle, a collection of X-ray images of the lungs is collected. Then, this dataset is preprocessed using two alternative methods. Some of the techniques include image enhancement and picture resizing. The two deep-learning models are then trained using the preprocessed dataset. A few more examples of DL algorithms include MobileNet and Inception-V3. The best model is then selected by validating the learned deep-learning models. As the epochs count increases during training and validation, the accuracy value for both models increases. The value of the loss increases as the number of epochs decreases. During the fourteenth validation period, the model generates a loss value of 0.32 for the MobileNet technique. During the first few training epochs, accuracy is lower, and by the fifteenth, it is close to 0.9. The Inception-V3 method produces a loss value of 0.1452 at the eleventh validation epoch, which is the lowest value. The greatest accuracy value of 0.9697 is obtained after the twelfth cycle of validation. The model that performs better and has lower loss values is then put through one last test. Inception-V3 is therefore selected as the top method for COVID-19 detection. The Inception-V3 system properly predicted each of the normal images and the COVID-19 images in the final test. Regarding pneumonia, it correctly predicted just one image out of 20 that are so small as to be disregarded. When a patient cannot afford to find a doctor for consultation, the DL model created in this work can be utilized as a preliminary test for COVID-19. By including the model created in this study as a backend processor for a website or software application, the study's findings can be updated.","PeriodicalId":178817,"journal":{"name":"2023 3rd International Conference on Innovative Practices in Technology and Management (ICIPTM)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COVID-19 Detection on X-Ray Image Using Deep Learning\",\"authors\":\"Manish K. Assudani, Neeraj Sahu, Arulmozhi, A. Saravanan, K. Dhinakaran, Ashok Kumar\",\"doi\":\"10.1109/ICIPTM57143.2023.10117823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"COVID-19 is one of the threats that came out of nowhere and literally shook the entire world. Various prediction techniques have been invented in a very short time. This study also develops a Deep Learning (DL) model which can predict the presence of COVID-19 and pneumonia by analyzing the X-ray images of human lungs. From Kaggle, a collection of X-ray images of the lungs is collected. Then, this dataset is preprocessed using two alternative methods. Some of the techniques include image enhancement and picture resizing. The two deep-learning models are then trained using the preprocessed dataset. A few more examples of DL algorithms include MobileNet and Inception-V3. The best model is then selected by validating the learned deep-learning models. As the epochs count increases during training and validation, the accuracy value for both models increases. The value of the loss increases as the number of epochs decreases. During the fourteenth validation period, the model generates a loss value of 0.32 for the MobileNet technique. During the first few training epochs, accuracy is lower, and by the fifteenth, it is close to 0.9. The Inception-V3 method produces a loss value of 0.1452 at the eleventh validation epoch, which is the lowest value. The greatest accuracy value of 0.9697 is obtained after the twelfth cycle of validation. The model that performs better and has lower loss values is then put through one last test. Inception-V3 is therefore selected as the top method for COVID-19 detection. The Inception-V3 system properly predicted each of the normal images and the COVID-19 images in the final test. Regarding pneumonia, it correctly predicted just one image out of 20 that are so small as to be disregarded. When a patient cannot afford to find a doctor for consultation, the DL model created in this work can be utilized as a preliminary test for COVID-19. By including the model created in this study as a backend processor for a website or software application, the study's findings can be updated.\",\"PeriodicalId\":178817,\"journal\":{\"name\":\"2023 3rd International Conference on Innovative Practices in Technology and Management (ICIPTM)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 3rd International Conference on Innovative Practices in Technology and Management (ICIPTM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIPTM57143.2023.10117823\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 3rd International Conference on Innovative Practices in Technology and Management (ICIPTM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIPTM57143.2023.10117823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
COVID-19 Detection on X-Ray Image Using Deep Learning
COVID-19 is one of the threats that came out of nowhere and literally shook the entire world. Various prediction techniques have been invented in a very short time. This study also develops a Deep Learning (DL) model which can predict the presence of COVID-19 and pneumonia by analyzing the X-ray images of human lungs. From Kaggle, a collection of X-ray images of the lungs is collected. Then, this dataset is preprocessed using two alternative methods. Some of the techniques include image enhancement and picture resizing. The two deep-learning models are then trained using the preprocessed dataset. A few more examples of DL algorithms include MobileNet and Inception-V3. The best model is then selected by validating the learned deep-learning models. As the epochs count increases during training and validation, the accuracy value for both models increases. The value of the loss increases as the number of epochs decreases. During the fourteenth validation period, the model generates a loss value of 0.32 for the MobileNet technique. During the first few training epochs, accuracy is lower, and by the fifteenth, it is close to 0.9. The Inception-V3 method produces a loss value of 0.1452 at the eleventh validation epoch, which is the lowest value. The greatest accuracy value of 0.9697 is obtained after the twelfth cycle of validation. The model that performs better and has lower loss values is then put through one last test. Inception-V3 is therefore selected as the top method for COVID-19 detection. The Inception-V3 system properly predicted each of the normal images and the COVID-19 images in the final test. Regarding pneumonia, it correctly predicted just one image out of 20 that are so small as to be disregarded. When a patient cannot afford to find a doctor for consultation, the DL model created in this work can be utilized as a preliminary test for COVID-19. By including the model created in this study as a backend processor for a website or software application, the study's findings can be updated.