基于深度学习的x射线图像COVID-19检测

Manish K. Assudani, Neeraj Sahu, Arulmozhi, A. Saravanan, K. Dhinakaran, Ashok Kumar
{"title":"基于深度学习的x射线图像COVID-19检测","authors":"Manish K. Assudani, Neeraj Sahu, Arulmozhi, A. Saravanan, K. Dhinakaran, Ashok Kumar","doi":"10.1109/ICIPTM57143.2023.10117823","DOIUrl":null,"url":null,"abstract":"COVID-19 is one of the threats that came out of nowhere and literally shook the entire world. Various prediction techniques have been invented in a very short time. This study also develops a Deep Learning (DL) model which can predict the presence of COVID-19 and pneumonia by analyzing the X-ray images of human lungs. From Kaggle, a collection of X-ray images of the lungs is collected. Then, this dataset is preprocessed using two alternative methods. Some of the techniques include image enhancement and picture resizing. The two deep-learning models are then trained using the preprocessed dataset. A few more examples of DL algorithms include MobileNet and Inception-V3. The best model is then selected by validating the learned deep-learning models. As the epochs count increases during training and validation, the accuracy value for both models increases. The value of the loss increases as the number of epochs decreases. During the fourteenth validation period, the model generates a loss value of 0.32 for the MobileNet technique. During the first few training epochs, accuracy is lower, and by the fifteenth, it is close to 0.9. The Inception-V3 method produces a loss value of 0.1452 at the eleventh validation epoch, which is the lowest value. The greatest accuracy value of 0.9697 is obtained after the twelfth cycle of validation. The model that performs better and has lower loss values is then put through one last test. Inception-V3 is therefore selected as the top method for COVID-19 detection. The Inception-V3 system properly predicted each of the normal images and the COVID-19 images in the final test. Regarding pneumonia, it correctly predicted just one image out of 20 that are so small as to be disregarded. When a patient cannot afford to find a doctor for consultation, the DL model created in this work can be utilized as a preliminary test for COVID-19. By including the model created in this study as a backend processor for a website or software application, the study's findings can be updated.","PeriodicalId":178817,"journal":{"name":"2023 3rd International Conference on Innovative Practices in Technology and Management (ICIPTM)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COVID-19 Detection on X-Ray Image Using Deep Learning\",\"authors\":\"Manish K. Assudani, Neeraj Sahu, Arulmozhi, A. Saravanan, K. Dhinakaran, Ashok Kumar\",\"doi\":\"10.1109/ICIPTM57143.2023.10117823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"COVID-19 is one of the threats that came out of nowhere and literally shook the entire world. Various prediction techniques have been invented in a very short time. This study also develops a Deep Learning (DL) model which can predict the presence of COVID-19 and pneumonia by analyzing the X-ray images of human lungs. From Kaggle, a collection of X-ray images of the lungs is collected. Then, this dataset is preprocessed using two alternative methods. Some of the techniques include image enhancement and picture resizing. The two deep-learning models are then trained using the preprocessed dataset. A few more examples of DL algorithms include MobileNet and Inception-V3. The best model is then selected by validating the learned deep-learning models. As the epochs count increases during training and validation, the accuracy value for both models increases. The value of the loss increases as the number of epochs decreases. During the fourteenth validation period, the model generates a loss value of 0.32 for the MobileNet technique. During the first few training epochs, accuracy is lower, and by the fifteenth, it is close to 0.9. The Inception-V3 method produces a loss value of 0.1452 at the eleventh validation epoch, which is the lowest value. The greatest accuracy value of 0.9697 is obtained after the twelfth cycle of validation. The model that performs better and has lower loss values is then put through one last test. Inception-V3 is therefore selected as the top method for COVID-19 detection. The Inception-V3 system properly predicted each of the normal images and the COVID-19 images in the final test. Regarding pneumonia, it correctly predicted just one image out of 20 that are so small as to be disregarded. When a patient cannot afford to find a doctor for consultation, the DL model created in this work can be utilized as a preliminary test for COVID-19. By including the model created in this study as a backend processor for a website or software application, the study's findings can be updated.\",\"PeriodicalId\":178817,\"journal\":{\"name\":\"2023 3rd International Conference on Innovative Practices in Technology and Management (ICIPTM)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 3rd International Conference on Innovative Practices in Technology and Management (ICIPTM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIPTM57143.2023.10117823\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 3rd International Conference on Innovative Practices in Technology and Management (ICIPTM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIPTM57143.2023.10117823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

COVID-19是一种不知从哪里冒出来的威胁,确实震惊了整个世界。各种预测技术在很短的时间内被发明出来。该研究还开发了一种深度学习(DL)模型,该模型可以通过分析人体肺部的x射线图像来预测COVID-19和肺炎的存在。从Kaggle,收集了一系列肺部的x射线图像。然后,使用两种替代方法对该数据集进行预处理。其中一些技术包括图像增强和图像大小调整。然后使用预处理数据集训练两个深度学习模型。DL算法的更多例子包括MobileNet和Inception-V3。然后通过验证学习到的深度学习模型来选择最佳模型。在训练和验证过程中,随着epoch计数的增加,两种模型的准确率值都在增加。损失值随着历元数的减少而增加。在第14个验证期,该模型为MobileNet技术生成了0.32的损失值。在最初的几个训练阶段,准确率较低,到第15个训练阶段,准确率接近0.9。Inception-V3方法在第11个验证epoch产生的损失值为0.1452,这是最低值。经第12次循环验证,准确度最高,为0.9697。然后对性能更好、损耗值更低的模型进行最后一次测试。因此,Inception-V3被选为COVID-19检测的首选方法。在最后的测试中,Inception-V3系统正确地预测了正常图像和COVID-19图像。至于肺炎,它在20张小到可以忽略的图像中只正确预测了一张。当患者无法负担医生诊费时,可以利用该模型作为COVID-19的初步测试。通过将本研究中创建的模型作为网站或软件应用程序的后端处理器,研究结果可以更新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
COVID-19 Detection on X-Ray Image Using Deep Learning
COVID-19 is one of the threats that came out of nowhere and literally shook the entire world. Various prediction techniques have been invented in a very short time. This study also develops a Deep Learning (DL) model which can predict the presence of COVID-19 and pneumonia by analyzing the X-ray images of human lungs. From Kaggle, a collection of X-ray images of the lungs is collected. Then, this dataset is preprocessed using two alternative methods. Some of the techniques include image enhancement and picture resizing. The two deep-learning models are then trained using the preprocessed dataset. A few more examples of DL algorithms include MobileNet and Inception-V3. The best model is then selected by validating the learned deep-learning models. As the epochs count increases during training and validation, the accuracy value for both models increases. The value of the loss increases as the number of epochs decreases. During the fourteenth validation period, the model generates a loss value of 0.32 for the MobileNet technique. During the first few training epochs, accuracy is lower, and by the fifteenth, it is close to 0.9. The Inception-V3 method produces a loss value of 0.1452 at the eleventh validation epoch, which is the lowest value. The greatest accuracy value of 0.9697 is obtained after the twelfth cycle of validation. The model that performs better and has lower loss values is then put through one last test. Inception-V3 is therefore selected as the top method for COVID-19 detection. The Inception-V3 system properly predicted each of the normal images and the COVID-19 images in the final test. Regarding pneumonia, it correctly predicted just one image out of 20 that are so small as to be disregarded. When a patient cannot afford to find a doctor for consultation, the DL model created in this work can be utilized as a preliminary test for COVID-19. By including the model created in this study as a backend processor for a website or software application, the study's findings can be updated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信