口腔x线影像的诊断与分类分析

Dhandapani Samiappan, Jayaraj R, Nijanth Shankar K, Nithish Kumar N
{"title":"口腔x线影像的诊断与分类分析","authors":"Dhandapani Samiappan, Jayaraj R, Nijanth Shankar K, Nithish Kumar N","doi":"10.1109/ICCMC56507.2023.10083914","DOIUrl":null,"url":null,"abstract":"In medicine, deep convolutional neural networks are prevalent due to their effectiveness in detection, prediction, and classification. Without panoramic dental radiography, professionals are unable to detect anomalies at the back of the mouth, the buccal cavity, and elsewhere. Using panoramic X-rays, this study presents a novel method of automated tooth detection and dental disease categorization to aid physicians in making correct diagnosis. Precision, recall, F1-score, and accuracy were used to evaluate the approach's bounding box detections and semantic segmentation. Multiple techniques' data showed the superiority of recommended solutions.","PeriodicalId":197059,"journal":{"name":"2023 7th International Conference on Computing Methodologies and Communication (ICCMC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Dental X-Ray Images for the Diagnosis and Classification of Oral Conditions\",\"authors\":\"Dhandapani Samiappan, Jayaraj R, Nijanth Shankar K, Nithish Kumar N\",\"doi\":\"10.1109/ICCMC56507.2023.10083914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In medicine, deep convolutional neural networks are prevalent due to their effectiveness in detection, prediction, and classification. Without panoramic dental radiography, professionals are unable to detect anomalies at the back of the mouth, the buccal cavity, and elsewhere. Using panoramic X-rays, this study presents a novel method of automated tooth detection and dental disease categorization to aid physicians in making correct diagnosis. Precision, recall, F1-score, and accuracy were used to evaluate the approach's bounding box detections and semantic segmentation. Multiple techniques' data showed the superiority of recommended solutions.\",\"PeriodicalId\":197059,\"journal\":{\"name\":\"2023 7th International Conference on Computing Methodologies and Communication (ICCMC)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 7th International Conference on Computing Methodologies and Communication (ICCMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCMC56507.2023.10083914\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 7th International Conference on Computing Methodologies and Communication (ICCMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCMC56507.2023.10083914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在医学领域,深度卷积神经网络因其在检测、预测和分类方面的有效性而流行。没有全景牙科x线摄影,专业人员无法检测口腔后部、口腔和其他地方的异常。本研究利用全景x光,提出一种新的牙齿自动检测和牙齿疾病分类方法,以帮助医生做出正确的诊断。精密度、查全率、f1分数和准确率被用来评价该方法的边界盒检测和语义分割。多种技术的数据显示了推荐方案的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Dental X-Ray Images for the Diagnosis and Classification of Oral Conditions
In medicine, deep convolutional neural networks are prevalent due to their effectiveness in detection, prediction, and classification. Without panoramic dental radiography, professionals are unable to detect anomalies at the back of the mouth, the buccal cavity, and elsewhere. Using panoramic X-rays, this study presents a novel method of automated tooth detection and dental disease categorization to aid physicians in making correct diagnosis. Precision, recall, F1-score, and accuracy were used to evaluate the approach's bounding box detections and semantic segmentation. Multiple techniques' data showed the superiority of recommended solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信