城市交通场景下的高效雷达时序检测

Zuyuan Guo, Haoran Wang, Wei Yi, Jiahao Zhang
{"title":"城市交通场景下的高效雷达时序检测","authors":"Zuyuan Guo, Haoran Wang, Wei Yi, Jiahao Zhang","doi":"10.1109/iv51971.2022.9827053","DOIUrl":null,"url":null,"abstract":"This paper explores object detection on radar range-Doppler map. Most of the radar processing algorithms are proposed for detecting objects without classifying. Meanwhile, these approaches neglect the useful information available in the temporal domain. To address these problems, we propose an online radar deep temporal detection framework by frame-to-frame prediction and association with low computation. The core idea is that once an object is detected, its location and class can be predicted in the future frame to improve detection results. The experiment results illustrate this method achieves better detection and classification performance, and shows the usability of radar data for traffic scenes.","PeriodicalId":184622,"journal":{"name":"2022 IEEE Intelligent Vehicles Symposium (IV)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Radar Deep Temporal Detection in Urban Traffic Scenes\",\"authors\":\"Zuyuan Guo, Haoran Wang, Wei Yi, Jiahao Zhang\",\"doi\":\"10.1109/iv51971.2022.9827053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores object detection on radar range-Doppler map. Most of the radar processing algorithms are proposed for detecting objects without classifying. Meanwhile, these approaches neglect the useful information available in the temporal domain. To address these problems, we propose an online radar deep temporal detection framework by frame-to-frame prediction and association with low computation. The core idea is that once an object is detected, its location and class can be predicted in the future frame to improve detection results. The experiment results illustrate this method achieves better detection and classification performance, and shows the usability of radar data for traffic scenes.\",\"PeriodicalId\":184622,\"journal\":{\"name\":\"2022 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iv51971.2022.9827053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iv51971.2022.9827053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了雷达距离-多普勒图上的目标检测。大多数雷达处理算法都是为了不分类地检测目标。同时,这些方法忽略了时态域中可用的有用信息。为了解决这些问题,我们提出了一种基于帧对帧预测和低计算关联的在线雷达深度时间检测框架。其核心思想是,一旦检测到一个物体,它的位置和类别可以在未来的框架中预测,以提高检测结果。实验结果表明,该方法取得了较好的检测和分类性能,显示了雷达数据在交通场景中的可用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Radar Deep Temporal Detection in Urban Traffic Scenes
This paper explores object detection on radar range-Doppler map. Most of the radar processing algorithms are proposed for detecting objects without classifying. Meanwhile, these approaches neglect the useful information available in the temporal domain. To address these problems, we propose an online radar deep temporal detection framework by frame-to-frame prediction and association with low computation. The core idea is that once an object is detected, its location and class can be predicted in the future frame to improve detection results. The experiment results illustrate this method achieves better detection and classification performance, and shows the usability of radar data for traffic scenes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信