{"title":"自参数非线性2自由度系统的多重平稳解","authors":"C. Fischer, J. Náprstek","doi":"10.21495/5896-3-130","DOIUrl":null,"url":null,"abstract":": A non-linear 2DOF model of a bridge girder with a bluff cross-section under wind loading is used to describe the heave and pitch self-excited motion. Existence conditions of stationary auto-parametric response for both the self-excited case and an assumption of a harmonic load form a non-linear algebraic system of equations. Number of distinct solutions to this algebraic system depends on the frequencies of two principal aero-elastic modes and other system parameters. Thus, the system may possess none, one, or several stationary solutions, whose stability has to be checked using the Routh-Hurwitz conditions. If all quantities entering the system are continuous functions, individual solutions may exhibit (piecewise) continuous dependence on selected system parameters. Thus, multiple identified solutions to the system for a given set of parameters may actually belong to a single solution branch and their values can be determined from the knowledge of the solution branch. Such a situation may significantly simplify assessment of stability of the particular solutions and/or provides an applicable overall description of the system response.","PeriodicalId":383836,"journal":{"name":"Engineering Mechanics 2020","volume":"191 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MULTIFOLD STATIONARY SOLUTIONS OF AN AUTO-PARAMETRIC NON-LINEAR 2DOF SYSTEM\",\"authors\":\"C. Fischer, J. Náprstek\",\"doi\":\"10.21495/5896-3-130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": A non-linear 2DOF model of a bridge girder with a bluff cross-section under wind loading is used to describe the heave and pitch self-excited motion. Existence conditions of stationary auto-parametric response for both the self-excited case and an assumption of a harmonic load form a non-linear algebraic system of equations. Number of distinct solutions to this algebraic system depends on the frequencies of two principal aero-elastic modes and other system parameters. Thus, the system may possess none, one, or several stationary solutions, whose stability has to be checked using the Routh-Hurwitz conditions. If all quantities entering the system are continuous functions, individual solutions may exhibit (piecewise) continuous dependence on selected system parameters. Thus, multiple identified solutions to the system for a given set of parameters may actually belong to a single solution branch and their values can be determined from the knowledge of the solution branch. Such a situation may significantly simplify assessment of stability of the particular solutions and/or provides an applicable overall description of the system response.\",\"PeriodicalId\":383836,\"journal\":{\"name\":\"Engineering Mechanics 2020\",\"volume\":\"191 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Mechanics 2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21495/5896-3-130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Mechanics 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21495/5896-3-130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MULTIFOLD STATIONARY SOLUTIONS OF AN AUTO-PARAMETRIC NON-LINEAR 2DOF SYSTEM
: A non-linear 2DOF model of a bridge girder with a bluff cross-section under wind loading is used to describe the heave and pitch self-excited motion. Existence conditions of stationary auto-parametric response for both the self-excited case and an assumption of a harmonic load form a non-linear algebraic system of equations. Number of distinct solutions to this algebraic system depends on the frequencies of two principal aero-elastic modes and other system parameters. Thus, the system may possess none, one, or several stationary solutions, whose stability has to be checked using the Routh-Hurwitz conditions. If all quantities entering the system are continuous functions, individual solutions may exhibit (piecewise) continuous dependence on selected system parameters. Thus, multiple identified solutions to the system for a given set of parameters may actually belong to a single solution branch and their values can be determined from the knowledge of the solution branch. Such a situation may significantly simplify assessment of stability of the particular solutions and/or provides an applicable overall description of the system response.