非校准条件下的热线测量

Yuexin Wang, T. Guo, Hui-ren Zhu
{"title":"非校准条件下的热线测量","authors":"Yuexin Wang, T. Guo, Hui-ren Zhu","doi":"10.1115/gt2021-59259","DOIUrl":null,"url":null,"abstract":"\n The hot-wire anemometer is a widely used instrumentation to determine flow velocity and to investigate flow quality. The main objective of this paper is to expand the application range of the hot wire by improving the measurement accuracy under non-calibrated temperature and pressure. According to the four kinds of heat transfer derivations, a new calibration method was carried out. Considering natural convection, heat radiation and heat conduction, and forced convection heat transfer, it can be found that the forced convection heat transfer plays a dominant role, and the main factor causing the change is the temperature. Forced convection heat transfer also changes with pressure, which affects heat transfer by affecting kinematic viscosity. Based on this, a new calibration method and formula of velocity were put forward, which can be used over a range of temperature and pressure, considering the changes of physical property of the calibration scheme were verified by numerical simulation. The numerical calculated results were compared, the average error was 0.69%, the maximum error was 2.9%. The results show that the calibration method has high accuracy in a certain range. This paper provides a new solution for the calibration of hot-wire anemometer, and expands the adaptability of hot-wire anemometer in the measurement of severe external conditions.","PeriodicalId":169840,"journal":{"name":"Volume 4: Controls, Diagnostics, and Instrumentation; Cycle Innovations; Cycle Innovations: Energy Storage; Education; Electric Power","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hot-Wire Measurements in Non-Calibrated Conditions\",\"authors\":\"Yuexin Wang, T. Guo, Hui-ren Zhu\",\"doi\":\"10.1115/gt2021-59259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The hot-wire anemometer is a widely used instrumentation to determine flow velocity and to investigate flow quality. The main objective of this paper is to expand the application range of the hot wire by improving the measurement accuracy under non-calibrated temperature and pressure. According to the four kinds of heat transfer derivations, a new calibration method was carried out. Considering natural convection, heat radiation and heat conduction, and forced convection heat transfer, it can be found that the forced convection heat transfer plays a dominant role, and the main factor causing the change is the temperature. Forced convection heat transfer also changes with pressure, which affects heat transfer by affecting kinematic viscosity. Based on this, a new calibration method and formula of velocity were put forward, which can be used over a range of temperature and pressure, considering the changes of physical property of the calibration scheme were verified by numerical simulation. The numerical calculated results were compared, the average error was 0.69%, the maximum error was 2.9%. The results show that the calibration method has high accuracy in a certain range. This paper provides a new solution for the calibration of hot-wire anemometer, and expands the adaptability of hot-wire anemometer in the measurement of severe external conditions.\",\"PeriodicalId\":169840,\"journal\":{\"name\":\"Volume 4: Controls, Diagnostics, and Instrumentation; Cycle Innovations; Cycle Innovations: Energy Storage; Education; Electric Power\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 4: Controls, Diagnostics, and Instrumentation; Cycle Innovations; Cycle Innovations: Energy Storage; Education; Electric Power\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/gt2021-59259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 4: Controls, Diagnostics, and Instrumentation; Cycle Innovations; Cycle Innovations: Energy Storage; Education; Electric Power","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2021-59259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

热线风速仪是一种广泛应用于测定流速和研究气流质量的仪器。本文的主要目的是通过提高非校准温度和压力下的测量精度来扩大热丝的应用范围。根据这四种传热导数,提出了一种新的标定方法。综合考虑自然对流、热辐射热传导和强制对流换热,可以发现强制对流换热起主导作用,引起变化的主要因素是温度。强制对流换热也随着压力的变化而变化,压力通过影响运动粘度来影响换热。在此基础上,提出了一种可在一定温度和压力范围内使用的速度标定方法和公式,并通过数值模拟对标定方案进行了验证。对数值计算结果进行比较,平均误差为0.69%,最大误差为2.9%。结果表明,该标定方法在一定范围内具有较高的精度。本文为热线风速仪的校准提供了一种新的解决方案,扩大了热线风速仪在恶劣外部条件下测量的适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hot-Wire Measurements in Non-Calibrated Conditions
The hot-wire anemometer is a widely used instrumentation to determine flow velocity and to investigate flow quality. The main objective of this paper is to expand the application range of the hot wire by improving the measurement accuracy under non-calibrated temperature and pressure. According to the four kinds of heat transfer derivations, a new calibration method was carried out. Considering natural convection, heat radiation and heat conduction, and forced convection heat transfer, it can be found that the forced convection heat transfer plays a dominant role, and the main factor causing the change is the temperature. Forced convection heat transfer also changes with pressure, which affects heat transfer by affecting kinematic viscosity. Based on this, a new calibration method and formula of velocity were put forward, which can be used over a range of temperature and pressure, considering the changes of physical property of the calibration scheme were verified by numerical simulation. The numerical calculated results were compared, the average error was 0.69%, the maximum error was 2.9%. The results show that the calibration method has high accuracy in a certain range. This paper provides a new solution for the calibration of hot-wire anemometer, and expands the adaptability of hot-wire anemometer in the measurement of severe external conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信