电机定子电流测量故障分类的递归量化分析

F. Ferracuti, A. Freddi, S. Longhi, A. Monteriù
{"title":"电机定子电流测量故障分类的递归量化分析","authors":"F. Ferracuti, A. Freddi, S. Longhi, A. Monteriù","doi":"10.1109/IECON.2019.8927375","DOIUrl":null,"url":null,"abstract":"Recurrence quantification analysis (RQA) allows to quantify the periodic behavior using recurrence plots instead of deriving information purely from visual analysis. The current study presents a preliminary analysis of stator-current measurements for electric motor fault detection and classification by means of the recurrence quantification theory. Firstly, a preliminary visual inspection of the recurrence plots of stator-current measurements for healthy and faulty electric motors is presented. Thereafter, the following RQ metrics are analyzed: the recurrence rate, the determinism, the divergence, the Shannon entropy, the laminarity and the trapping time. Then, the RQ metrics are used as predictors for fault detection and classification. The classification results (100% fault classification accuracy), which are presented using the linear support vector machine classifier, show that the RQA can be considered as a tool for motor current signature analysis.","PeriodicalId":187719,"journal":{"name":"IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society","volume":"321 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Recurrence Quantification Analysis of Stator-Current Measurements for Electric Motor Fault Classification\",\"authors\":\"F. Ferracuti, A. Freddi, S. Longhi, A. Monteriù\",\"doi\":\"10.1109/IECON.2019.8927375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recurrence quantification analysis (RQA) allows to quantify the periodic behavior using recurrence plots instead of deriving information purely from visual analysis. The current study presents a preliminary analysis of stator-current measurements for electric motor fault detection and classification by means of the recurrence quantification theory. Firstly, a preliminary visual inspection of the recurrence plots of stator-current measurements for healthy and faulty electric motors is presented. Thereafter, the following RQ metrics are analyzed: the recurrence rate, the determinism, the divergence, the Shannon entropy, the laminarity and the trapping time. Then, the RQ metrics are used as predictors for fault detection and classification. The classification results (100% fault classification accuracy), which are presented using the linear support vector machine classifier, show that the RQA can be considered as a tool for motor current signature analysis.\",\"PeriodicalId\":187719,\"journal\":{\"name\":\"IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society\",\"volume\":\"321 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON.2019.8927375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.2019.8927375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

递归量化分析(RQA)允许使用递归图来量化周期性行为,而不是纯粹从视觉分析中获取信息。本文用递归量化理论对定子电流测量在电机故障检测和分类中的应用进行了初步分析。首先,对正常电动机和故障电动机定子电流测量的重现图进行了初步的目视检查。然后,分析了RQ的复发率、确定性、散度、香农熵、层流和捕获时间。然后,将RQ指标用作故障检测和分类的预测因子。使用线性支持向量机分类器给出的分类结果(100%的故障分类准确率)表明,RQA可以作为电机电流特征分析的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recurrence Quantification Analysis of Stator-Current Measurements for Electric Motor Fault Classification
Recurrence quantification analysis (RQA) allows to quantify the periodic behavior using recurrence plots instead of deriving information purely from visual analysis. The current study presents a preliminary analysis of stator-current measurements for electric motor fault detection and classification by means of the recurrence quantification theory. Firstly, a preliminary visual inspection of the recurrence plots of stator-current measurements for healthy and faulty electric motors is presented. Thereafter, the following RQ metrics are analyzed: the recurrence rate, the determinism, the divergence, the Shannon entropy, the laminarity and the trapping time. Then, the RQ metrics are used as predictors for fault detection and classification. The classification results (100% fault classification accuracy), which are presented using the linear support vector machine classifier, show that the RQA can be considered as a tool for motor current signature analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信