基于稀疏非负矩阵分解的信用风险分析

Haoliang Sun, Zhiqian Chen, James Chen
{"title":"基于稀疏非负矩阵分解的信用风险分析","authors":"Haoliang Sun, Zhiqian Chen, James Chen","doi":"10.1109/ICISCE.2015.47","DOIUrl":null,"url":null,"abstract":"Credit risk analysis is to determine if a customer is likely to default on the financial obligation. In this paper, we will introduce sparse non-negative matrix factorization method to discovery the lower dimensional space for reducing the data dimensionality, which will contribute to good performance and fast computation in the credit risk classification performed by support vector machine. We test the sparse NMF in a real-world credit risk prediction task, and the empirical results demonstrate the advantage of sparse NMF by comparing with other state of art methods.","PeriodicalId":356250,"journal":{"name":"2015 2nd International Conference on Information Science and Control Engineering","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Credit Risk Analysis Using Sparse Non-negative Matrix Factorizations\",\"authors\":\"Haoliang Sun, Zhiqian Chen, James Chen\",\"doi\":\"10.1109/ICISCE.2015.47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Credit risk analysis is to determine if a customer is likely to default on the financial obligation. In this paper, we will introduce sparse non-negative matrix factorization method to discovery the lower dimensional space for reducing the data dimensionality, which will contribute to good performance and fast computation in the credit risk classification performed by support vector machine. We test the sparse NMF in a real-world credit risk prediction task, and the empirical results demonstrate the advantage of sparse NMF by comparing with other state of art methods.\",\"PeriodicalId\":356250,\"journal\":{\"name\":\"2015 2nd International Conference on Information Science and Control Engineering\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 2nd International Conference on Information Science and Control Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICISCE.2015.47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 2nd International Conference on Information Science and Control Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISCE.2015.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

信用风险分析是确定客户是否有可能违约的金融义务。本文将引入稀疏非负矩阵分解方法,通过发现低维空间来降低数据维数,从而使支持向量机进行信用风险分类具有良好的性能和快速的计算速度。我们在现实世界的信用风险预测任务中对稀疏NMF进行了测试,通过与其他最先进的方法进行比较,实证结果证明了稀疏NMF的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Credit Risk Analysis Using Sparse Non-negative Matrix Factorizations
Credit risk analysis is to determine if a customer is likely to default on the financial obligation. In this paper, we will introduce sparse non-negative matrix factorization method to discovery the lower dimensional space for reducing the data dimensionality, which will contribute to good performance and fast computation in the credit risk classification performed by support vector machine. We test the sparse NMF in a real-world credit risk prediction task, and the empirical results demonstrate the advantage of sparse NMF by comparing with other state of art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信