{"title":"STAR+码:具有渐进最优更新和高效编码/解码的三容错码","authors":"Hanxu Hou, Patrick Lee","doi":"10.1109/ITW48936.2021.9611512","DOIUrl":null,"url":null,"abstract":"STAR codes are well-known binary Maximum Distance Separable (MDS) array codes with triple fault tolerance and low encoding/decoding complexity, yet the update complexity of STAR codes is sub-optimal. We propose STAR+ codes, which extend STAR codes to achieve asymptotically optimal update complexity. We show that STAR+ codes are the generalized version of STAR codes with triple fault tolerance, and additionally have strictly less complexity in encoding, decoding, and updates than STAR codes for most parameters.","PeriodicalId":325229,"journal":{"name":"2021 IEEE Information Theory Workshop (ITW)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"STAR+ Codes: Triple-Fault-Tolerant Codes with Asymptotically Optimal Updates and Efficient Encoding/Decoding\",\"authors\":\"Hanxu Hou, Patrick Lee\",\"doi\":\"10.1109/ITW48936.2021.9611512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"STAR codes are well-known binary Maximum Distance Separable (MDS) array codes with triple fault tolerance and low encoding/decoding complexity, yet the update complexity of STAR codes is sub-optimal. We propose STAR+ codes, which extend STAR codes to achieve asymptotically optimal update complexity. We show that STAR+ codes are the generalized version of STAR codes with triple fault tolerance, and additionally have strictly less complexity in encoding, decoding, and updates than STAR codes for most parameters.\",\"PeriodicalId\":325229,\"journal\":{\"name\":\"2021 IEEE Information Theory Workshop (ITW)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Information Theory Workshop (ITW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW48936.2021.9611512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW48936.2021.9611512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
STAR+ Codes: Triple-Fault-Tolerant Codes with Asymptotically Optimal Updates and Efficient Encoding/Decoding
STAR codes are well-known binary Maximum Distance Separable (MDS) array codes with triple fault tolerance and low encoding/decoding complexity, yet the update complexity of STAR codes is sub-optimal. We propose STAR+ codes, which extend STAR codes to achieve asymptotically optimal update complexity. We show that STAR+ codes are the generalized version of STAR codes with triple fault tolerance, and additionally have strictly less complexity in encoding, decoding, and updates than STAR codes for most parameters.