时间序列预测的自动机器学习

Felipe Rooke da Silva, A. Vieira, H. Bernardino, Victor Aquiles Alencar, Lucas Ribeiro Pessamilio, H. Barbosa
{"title":"时间序列预测的自动机器学习","authors":"Felipe Rooke da Silva, A. Vieira, H. Bernardino, Victor Aquiles Alencar, Lucas Ribeiro Pessamilio, H. Barbosa","doi":"10.1109/CEC55065.2022.9870305","DOIUrl":null,"url":null,"abstract":"Automated Machine Learn (AutoML) process is target of large studies, both from academia and industry. AutoML reduces the demand for data scientists and makes specialists in specific fields able to use Machine Learn (ML) in their domains. An application of ML algorithms is over time-series forecasting, and about these, few works involve the application of AutoML. In this work, an AutoML approach that aggregates time-series forecasting models is proposed. Furthermore, a special focus is given to the optimization stage, which uses genetic algorithm to boost searching for hyper-parameters. In the end, results are compared with a recent time-series forecasting benchmark and we verify that the AutoML model proposed in this work surpasses the benchmark.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Automated Machine Learning for Time Series Prediction\",\"authors\":\"Felipe Rooke da Silva, A. Vieira, H. Bernardino, Victor Aquiles Alencar, Lucas Ribeiro Pessamilio, H. Barbosa\",\"doi\":\"10.1109/CEC55065.2022.9870305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automated Machine Learn (AutoML) process is target of large studies, both from academia and industry. AutoML reduces the demand for data scientists and makes specialists in specific fields able to use Machine Learn (ML) in their domains. An application of ML algorithms is over time-series forecasting, and about these, few works involve the application of AutoML. In this work, an AutoML approach that aggregates time-series forecasting models is proposed. Furthermore, a special focus is given to the optimization stage, which uses genetic algorithm to boost searching for hyper-parameters. In the end, results are compared with a recent time-series forecasting benchmark and we verify that the AutoML model proposed in this work surpasses the benchmark.\",\"PeriodicalId\":153241,\"journal\":{\"name\":\"2022 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC55065.2022.9870305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC55065.2022.9870305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

自动化机器学习(AutoML)过程是学术界和工业界大规模研究的目标。AutoML减少了对数据科学家的需求,使特定领域的专家能够在他们的领域中使用机器学习(ML)。机器学习算法的一个应用是对时间序列的预测,而在这方面,涉及到机器学习应用的工作很少。在这项工作中,提出了一种集合时间序列预测模型的AutoML方法。此外,还特别关注了优化阶段,该阶段使用遗传算法来增强对超参数的搜索。最后,将结果与最近的时间序列预测基准进行了比较,验证了本文提出的AutoML模型优于基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated Machine Learning for Time Series Prediction
Automated Machine Learn (AutoML) process is target of large studies, both from academia and industry. AutoML reduces the demand for data scientists and makes specialists in specific fields able to use Machine Learn (ML) in their domains. An application of ML algorithms is over time-series forecasting, and about these, few works involve the application of AutoML. In this work, an AutoML approach that aggregates time-series forecasting models is proposed. Furthermore, a special focus is given to the optimization stage, which uses genetic algorithm to boost searching for hyper-parameters. In the end, results are compared with a recent time-series forecasting benchmark and we verify that the AutoML model proposed in this work surpasses the benchmark.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信