词性标注中标签偏差问题的影响

Hong Phuong Le, X. Phan, The-Trung Tran
{"title":"词性标注中标签偏差问题的影响","authors":"Hong Phuong Le, X. Phan, The-Trung Tran","doi":"10.1109/RIVF.2013.6719875","DOIUrl":null,"url":null,"abstract":"This paper investigates the effect of the label bias problem of maximum entropy Markov models for part-of-speech tagging, a typical sequence prediction task in natural language processing. This problem has been underexploited and underappreciated. The investigation reveals useful information about the entropy of local transition probability distributions of the tagging model which enables us to exploit and quantify the label bias effect of part-of-speech tagging. Experiments on a Vietnamese treebank and on a French treebank show a significant effect of the label bias problem in both of the languages.","PeriodicalId":121216,"journal":{"name":"The 2013 RIVF International Conference on Computing & Communication Technologies - Research, Innovation, and Vision for Future (RIVF)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On the effect of the label bias problem in part-of-speech tagging\",\"authors\":\"Hong Phuong Le, X. Phan, The-Trung Tran\",\"doi\":\"10.1109/RIVF.2013.6719875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the effect of the label bias problem of maximum entropy Markov models for part-of-speech tagging, a typical sequence prediction task in natural language processing. This problem has been underexploited and underappreciated. The investigation reveals useful information about the entropy of local transition probability distributions of the tagging model which enables us to exploit and quantify the label bias effect of part-of-speech tagging. Experiments on a Vietnamese treebank and on a French treebank show a significant effect of the label bias problem in both of the languages.\",\"PeriodicalId\":121216,\"journal\":{\"name\":\"The 2013 RIVF International Conference on Computing & Communication Technologies - Research, Innovation, and Vision for Future (RIVF)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2013 RIVF International Conference on Computing & Communication Technologies - Research, Innovation, and Vision for Future (RIVF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RIVF.2013.6719875\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2013 RIVF International Conference on Computing & Communication Technologies - Research, Innovation, and Vision for Future (RIVF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIVF.2013.6719875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文研究了最大熵马尔可夫模型的标签偏差问题对词性标注的影响,词性标注是自然语言处理中典型的序列预测任务。这个问题一直没有得到充分利用和重视。研究揭示了标注模型局部转移概率分布熵的有用信息,使我们能够利用和量化词性标注的标签偏差效应。在越南语树库和法语树库上的实验表明,标签偏差问题对两种语言都有显著的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the effect of the label bias problem in part-of-speech tagging
This paper investigates the effect of the label bias problem of maximum entropy Markov models for part-of-speech tagging, a typical sequence prediction task in natural language processing. This problem has been underexploited and underappreciated. The investigation reveals useful information about the entropy of local transition probability distributions of the tagging model which enables us to exploit and quantify the label bias effect of part-of-speech tagging. Experiments on a Vietnamese treebank and on a French treebank show a significant effect of the label bias problem in both of the languages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信