AngHNE

Cangqi Zhou, Hui Chen, Jing Zhang, Qianmu Li, Dianming Hu
{"title":"AngHNE","authors":"Cangqi Zhou, Hui Chen, Jing Zhang, Qianmu Li, Dianming Hu","doi":"10.1145/3488560.3498510","DOIUrl":null,"url":null,"abstract":"Real-world networks often show heterogeneity. A frequently encountered type is the bipartite heterogeneous structure, in which two types of nodes and three types of edges exist. Recently, much attention has been devoted to representation learning in these networks. One of the essential differences between heterogeneous and homogeneous learning is that the former structure requires methods to possess awareness to node and edge types. Most existing methods, including metapath-based, proximity-based and graph neural network-based, adopt inner product or vector norms to evaluate the similarities in embedding space. However, these measures either violates the triangle inequality, or show severe sensitivity to scaling transformation. The limitations often hinder the applicability to real-world problems. In view of this, in this paper, we propose a novel angle-based method for bipartite heterogeneous network representation. Specifically, we first construct training sets by generating quintuples, which contain both positive and negative samples from two different parts of networks. Then we analyze the quintuple-based problem from a geometry perspective, and transform the comparisons between preferred and non-preferred samples to the comparisons of angles. In addition, we utilize convolution modules to extract node features. A hinge loss, as the final objective, is proposed to relax the angular constraint for learning. Extensive experiments for two typical tasks show the efficacy of the proposed method, comparing with eight competitive methods.","PeriodicalId":348686,"journal":{"name":"Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining","volume":"305 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AngHNE\",\"authors\":\"Cangqi Zhou, Hui Chen, Jing Zhang, Qianmu Li, Dianming Hu\",\"doi\":\"10.1145/3488560.3498510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-world networks often show heterogeneity. A frequently encountered type is the bipartite heterogeneous structure, in which two types of nodes and three types of edges exist. Recently, much attention has been devoted to representation learning in these networks. One of the essential differences between heterogeneous and homogeneous learning is that the former structure requires methods to possess awareness to node and edge types. Most existing methods, including metapath-based, proximity-based and graph neural network-based, adopt inner product or vector norms to evaluate the similarities in embedding space. However, these measures either violates the triangle inequality, or show severe sensitivity to scaling transformation. The limitations often hinder the applicability to real-world problems. In view of this, in this paper, we propose a novel angle-based method for bipartite heterogeneous network representation. Specifically, we first construct training sets by generating quintuples, which contain both positive and negative samples from two different parts of networks. Then we analyze the quintuple-based problem from a geometry perspective, and transform the comparisons between preferred and non-preferred samples to the comparisons of angles. In addition, we utilize convolution modules to extract node features. A hinge loss, as the final objective, is proposed to relax the angular constraint for learning. Extensive experiments for two typical tasks show the efficacy of the proposed method, comparing with eight competitive methods.\",\"PeriodicalId\":348686,\"journal\":{\"name\":\"Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining\",\"volume\":\"305 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3488560.3498510\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3488560.3498510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
AngHNE
Real-world networks often show heterogeneity. A frequently encountered type is the bipartite heterogeneous structure, in which two types of nodes and three types of edges exist. Recently, much attention has been devoted to representation learning in these networks. One of the essential differences between heterogeneous and homogeneous learning is that the former structure requires methods to possess awareness to node and edge types. Most existing methods, including metapath-based, proximity-based and graph neural network-based, adopt inner product or vector norms to evaluate the similarities in embedding space. However, these measures either violates the triangle inequality, or show severe sensitivity to scaling transformation. The limitations often hinder the applicability to real-world problems. In view of this, in this paper, we propose a novel angle-based method for bipartite heterogeneous network representation. Specifically, we first construct training sets by generating quintuples, which contain both positive and negative samples from two different parts of networks. Then we analyze the quintuple-based problem from a geometry perspective, and transform the comparisons between preferred and non-preferred samples to the comparisons of angles. In addition, we utilize convolution modules to extract node features. A hinge loss, as the final objective, is proposed to relax the angular constraint for learning. Extensive experiments for two typical tasks show the efficacy of the proposed method, comparing with eight competitive methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信