利用粒子群算法进化基于兴趣的用户群

S. Ganesan, Arul Isai Udhaya Sivaneri, S. Selvaraju
{"title":"利用粒子群算法进化基于兴趣的用户群","authors":"S. Ganesan, Arul Isai Udhaya Sivaneri, S. Selvaraju","doi":"10.1109/ICRTIT.2014.6996196","DOIUrl":null,"url":null,"abstract":"Any Web site may have the continuous improvement based on the getting information of the users' needs. There is a step to achieve it by the collection of users' search data and analysis of those data. The swarm intelligence technique of Particle Swarm Optimization(PSO) is applied for evolving similar user groups. PSO is important to identify the web users' travels with the same interests. The data set comprises of web log files obtained by collecting the user logs during a six month period. The PSO algorithm is attempted for user categorization. In web search, the users are grouped into different categories based on their similar travels. The grouping performance of the PSO technique is compared with the techniques of DBSCAN and Kmeans.","PeriodicalId":422275,"journal":{"name":"2014 International Conference on Recent Trends in Information Technology","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Evolving interest based user groups using PSO algorithm\",\"authors\":\"S. Ganesan, Arul Isai Udhaya Sivaneri, S. Selvaraju\",\"doi\":\"10.1109/ICRTIT.2014.6996196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Any Web site may have the continuous improvement based on the getting information of the users' needs. There is a step to achieve it by the collection of users' search data and analysis of those data. The swarm intelligence technique of Particle Swarm Optimization(PSO) is applied for evolving similar user groups. PSO is important to identify the web users' travels with the same interests. The data set comprises of web log files obtained by collecting the user logs during a six month period. The PSO algorithm is attempted for user categorization. In web search, the users are grouped into different categories based on their similar travels. The grouping performance of the PSO technique is compared with the techniques of DBSCAN and Kmeans.\",\"PeriodicalId\":422275,\"journal\":{\"name\":\"2014 International Conference on Recent Trends in Information Technology\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Recent Trends in Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRTIT.2014.6996196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Recent Trends in Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRTIT.2014.6996196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

任何网站都可以在获取用户需求信息的基础上不断改进。通过收集用户的搜索数据并对这些数据进行分析,有一个步骤可以实现这一点。将粒子群算法(PSO)中的群体智能技术应用于相似用户群的演化。PSO对于识别具有相同兴趣的网络用户的旅行非常重要。该数据集是通过收集6个月的用户日志获取的web日志文件。尝试用粒子群算法对用户进行分类。在网络搜索中,用户根据他们相似的旅行经历被分成不同的类别。将PSO技术的分组性能与DBSCAN技术和Kmeans技术进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolving interest based user groups using PSO algorithm
Any Web site may have the continuous improvement based on the getting information of the users' needs. There is a step to achieve it by the collection of users' search data and analysis of those data. The swarm intelligence technique of Particle Swarm Optimization(PSO) is applied for evolving similar user groups. PSO is important to identify the web users' travels with the same interests. The data set comprises of web log files obtained by collecting the user logs during a six month period. The PSO algorithm is attempted for user categorization. In web search, the users are grouped into different categories based on their similar travels. The grouping performance of the PSO technique is compared with the techniques of DBSCAN and Kmeans.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信