基于高斯过程回归的四频带陷波超宽带MIMO天线反演建模

Debanjali Sarkar, Sumon Modak, T. Khan, F. Talukdar
{"title":"基于高斯过程回归的四频带陷波超宽带MIMO天线反演建模","authors":"Debanjali Sarkar, Sumon Modak, T. Khan, F. Talukdar","doi":"10.1109/InCAP52216.2021.9726345","DOIUrl":null,"url":null,"abstract":"In this paper, a machine learning (ML) model based on Gaussian process regression (GPR) is presented for inverse modeling arrow head-shaped MIMO antenna. The antenna satisfies UWB bandwidth criteria from 3-10.7 GHz and realizes quad band notch characteristics for WiMAX, WLAN and C-band satellite communication systems (downlink and uplink). Datasets required to train the ML model are obtained by varying the dimensions of the MIMO antenna through a finite element method solver. The proposed GPR model is used to estimate the geometrical parameters of the MIMO antenna using cut-off frequencies and four notch frequencies. An artificial neural network (ANN) model based on multilayer perceptron (MLP) is also proposed for comparative analysis. The results obtained using GPR and MLP are compared and it is observed that GPR has outperformed the MLP model in terms of various statistical measures.","PeriodicalId":201547,"journal":{"name":"2021 IEEE Indian Conference on Antennas and Propagation (InCAP)","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse Modeling of Quad-Band Notched UWB MIMO Antennas using Gaussian Process Regression\",\"authors\":\"Debanjali Sarkar, Sumon Modak, T. Khan, F. Talukdar\",\"doi\":\"10.1109/InCAP52216.2021.9726345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a machine learning (ML) model based on Gaussian process regression (GPR) is presented for inverse modeling arrow head-shaped MIMO antenna. The antenna satisfies UWB bandwidth criteria from 3-10.7 GHz and realizes quad band notch characteristics for WiMAX, WLAN and C-band satellite communication systems (downlink and uplink). Datasets required to train the ML model are obtained by varying the dimensions of the MIMO antenna through a finite element method solver. The proposed GPR model is used to estimate the geometrical parameters of the MIMO antenna using cut-off frequencies and four notch frequencies. An artificial neural network (ANN) model based on multilayer perceptron (MLP) is also proposed for comparative analysis. The results obtained using GPR and MLP are compared and it is observed that GPR has outperformed the MLP model in terms of various statistical measures.\",\"PeriodicalId\":201547,\"journal\":{\"name\":\"2021 IEEE Indian Conference on Antennas and Propagation (InCAP)\",\"volume\":\"113 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Indian Conference on Antennas and Propagation (InCAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/InCAP52216.2021.9726345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Indian Conference on Antennas and Propagation (InCAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/InCAP52216.2021.9726345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于高斯过程回归(GPR)的机器学习(ML)模型,用于对箭头形MIMO天线进行逆建模。该天线满足3-10.7 GHz的超宽带带宽标准,可实现WiMAX、WLAN和c波段卫星通信系统(下行和上行)的四频带陷波特性。通过有限元求解器改变MIMO天线的尺寸,获得训练ML模型所需的数据集。提出的探地雷达模型利用截止频率和四个陷波频率估计MIMO天线的几何参数。并提出了一种基于多层感知器的人工神经网络模型进行对比分析。比较了探地雷达模型和MLP模型得到的结果,发现探地雷达模型在各项统计指标上都优于MLP模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inverse Modeling of Quad-Band Notched UWB MIMO Antennas using Gaussian Process Regression
In this paper, a machine learning (ML) model based on Gaussian process regression (GPR) is presented for inverse modeling arrow head-shaped MIMO antenna. The antenna satisfies UWB bandwidth criteria from 3-10.7 GHz and realizes quad band notch characteristics for WiMAX, WLAN and C-band satellite communication systems (downlink and uplink). Datasets required to train the ML model are obtained by varying the dimensions of the MIMO antenna through a finite element method solver. The proposed GPR model is used to estimate the geometrical parameters of the MIMO antenna using cut-off frequencies and four notch frequencies. An artificial neural network (ANN) model based on multilayer perceptron (MLP) is also proposed for comparative analysis. The results obtained using GPR and MLP are compared and it is observed that GPR has outperformed the MLP model in terms of various statistical measures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信