Linda K. Dämmer, L. D. de Nooijer, E. van Sebille, Jan G. Haak, G. Reichart
{"title":"地中海浮游有孔虫同位素和元素作为海水氧同位素和盐度记录仪的评价","authors":"Linda K. Dämmer, L. D. de Nooijer, E. van Sebille, Jan G. Haak, G. Reichart","doi":"10.5194/cp-2020-26","DOIUrl":null,"url":null,"abstract":"Abstract. The Mediterranean Sea is characterized by a relatively strong west to east salinity gradient, which makes it an area suitable to test the effect of salinity on foraminiferal shell geochemistry. We collected living specimens of the planktonic foraminifer Globigerinoides ruber (white) to analyse the relation between element/Ca ratios, stable oxygen isotopes of their shells and surface seawater salinity, isotopic composition and temperature. The oxygen isotopes of sea surface water correlate with salinity in the Mediterranean also during winter, when sampled for this study. Sea water oxygen and hydrogen isotopes are positively correlated in both the eastern and western Mediterranean Sea, though especially in the eastern part the relationship differs from values reported previously for that area. The slope between salinity and seawater oxygen isotopes is lower than previously published. Still, despite the rather modest slope, seawater and foraminiferal carbonate oxygen isotopes are correlated in our dataset although with large residuals and high residual variability. This scatter can be due to either biological variability in vital effects or environmental variability. Numerical models backtracking particles show ocean current driven mixing of particles of different origin might dampen sensitivity and could result in an offset caused by horizontal transport. Results show that Na/Ca is positively correlated to salinity and independent of temperature. Foraminiferal Mg/Ca increases with temperature, as expected, and in line with earlier calibrations, also in the high salinity environment. By using living foraminifera during winter, the previously established Mg/Ca-temperature calibration is extended to temperatures below 18 °C, which is a fundamental prerequisite of using single foraminifera for reconstructing past seasonality.","PeriodicalId":263057,"journal":{"name":"Climate of The Past Discussions","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Evaluation of isotopes and elements in planktonic foraminifera from the Mediterranean Sea as recorders of seawater oxygen isotopes and salinity\",\"authors\":\"Linda K. Dämmer, L. D. de Nooijer, E. van Sebille, Jan G. Haak, G. Reichart\",\"doi\":\"10.5194/cp-2020-26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. The Mediterranean Sea is characterized by a relatively strong west to east salinity gradient, which makes it an area suitable to test the effect of salinity on foraminiferal shell geochemistry. We collected living specimens of the planktonic foraminifer Globigerinoides ruber (white) to analyse the relation between element/Ca ratios, stable oxygen isotopes of their shells and surface seawater salinity, isotopic composition and temperature. The oxygen isotopes of sea surface water correlate with salinity in the Mediterranean also during winter, when sampled for this study. Sea water oxygen and hydrogen isotopes are positively correlated in both the eastern and western Mediterranean Sea, though especially in the eastern part the relationship differs from values reported previously for that area. The slope between salinity and seawater oxygen isotopes is lower than previously published. Still, despite the rather modest slope, seawater and foraminiferal carbonate oxygen isotopes are correlated in our dataset although with large residuals and high residual variability. This scatter can be due to either biological variability in vital effects or environmental variability. Numerical models backtracking particles show ocean current driven mixing of particles of different origin might dampen sensitivity and could result in an offset caused by horizontal transport. Results show that Na/Ca is positively correlated to salinity and independent of temperature. Foraminiferal Mg/Ca increases with temperature, as expected, and in line with earlier calibrations, also in the high salinity environment. By using living foraminifera during winter, the previously established Mg/Ca-temperature calibration is extended to temperatures below 18 °C, which is a fundamental prerequisite of using single foraminifera for reconstructing past seasonality.\",\"PeriodicalId\":263057,\"journal\":{\"name\":\"Climate of The Past Discussions\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Climate of The Past Discussions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/cp-2020-26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate of The Past Discussions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/cp-2020-26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluation of isotopes and elements in planktonic foraminifera from the Mediterranean Sea as recorders of seawater oxygen isotopes and salinity
Abstract. The Mediterranean Sea is characterized by a relatively strong west to east salinity gradient, which makes it an area suitable to test the effect of salinity on foraminiferal shell geochemistry. We collected living specimens of the planktonic foraminifer Globigerinoides ruber (white) to analyse the relation between element/Ca ratios, stable oxygen isotopes of their shells and surface seawater salinity, isotopic composition and temperature. The oxygen isotopes of sea surface water correlate with salinity in the Mediterranean also during winter, when sampled for this study. Sea water oxygen and hydrogen isotopes are positively correlated in both the eastern and western Mediterranean Sea, though especially in the eastern part the relationship differs from values reported previously for that area. The slope between salinity and seawater oxygen isotopes is lower than previously published. Still, despite the rather modest slope, seawater and foraminiferal carbonate oxygen isotopes are correlated in our dataset although with large residuals and high residual variability. This scatter can be due to either biological variability in vital effects or environmental variability. Numerical models backtracking particles show ocean current driven mixing of particles of different origin might dampen sensitivity and could result in an offset caused by horizontal transport. Results show that Na/Ca is positively correlated to salinity and independent of temperature. Foraminiferal Mg/Ca increases with temperature, as expected, and in line with earlier calibrations, also in the high salinity environment. By using living foraminifera during winter, the previously established Mg/Ca-temperature calibration is extended to temperatures below 18 °C, which is a fundamental prerequisite of using single foraminifera for reconstructing past seasonality.