电池管理系统与太阳能大数据预测的系统文献综述

Padeli Padeli, S. Sudaryono, Ridwan Alberto Pandiangan
{"title":"电池管理系统与太阳能大数据预测的系统文献综述","authors":"Padeli Padeli, S. Sudaryono, Ridwan Alberto Pandiangan","doi":"10.33050/sensi.v9i2.2909","DOIUrl":null,"url":null,"abstract":"Penelitian ini bertujuan untuk menganalisis sistem manajemen baterai dengan memprediksi tenaga surya melalui bigdata ditinjau dari kajian literatur. Dengan adanya pertumbuhan biaya integrasi, pengelolaan limbah yang semakin rumit, variabilitas daya listrik yang berdampak sosio-lingkungan sehingga membutuhkan model sektor listrik baru dengan memanfaatkan tenaga surya. Oleh karenanya penelitian ini merupakan hasil tinjauan literature review dengan prinsip systematic literature review untuk memprediksi tenaga surya dalam pengelolaan listrik dengan sistem baterai.  Metode Systematic Literature Review (SLR) digunakan untuk mendefinisikan dan mengevaluasi literatur dalam rangkaian makalah. Pencarian menggunakan 41 makalah untuk evaluasi  sebelumnya, menunjukkan bahwa model yang digunakan untuk memprediksi tenaga surya adalah eksperimen akademik jangka panjang. Algoritma ELM (Extreme Learning Machine) menjadi pilihan dalam pengelolaan listrik dengan tenaga surya melalui system baterai dibandingkan dengan algoritma JST (Jaringan Syaraf Tiruan).","PeriodicalId":134510,"journal":{"name":"Journal Sensi","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Systematic Literature Review on Battery Management Systems and predicting Solar Big Data\",\"authors\":\"Padeli Padeli, S. Sudaryono, Ridwan Alberto Pandiangan\",\"doi\":\"10.33050/sensi.v9i2.2909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Penelitian ini bertujuan untuk menganalisis sistem manajemen baterai dengan memprediksi tenaga surya melalui bigdata ditinjau dari kajian literatur. Dengan adanya pertumbuhan biaya integrasi, pengelolaan limbah yang semakin rumit, variabilitas daya listrik yang berdampak sosio-lingkungan sehingga membutuhkan model sektor listrik baru dengan memanfaatkan tenaga surya. Oleh karenanya penelitian ini merupakan hasil tinjauan literature review dengan prinsip systematic literature review untuk memprediksi tenaga surya dalam pengelolaan listrik dengan sistem baterai.  Metode Systematic Literature Review (SLR) digunakan untuk mendefinisikan dan mengevaluasi literatur dalam rangkaian makalah. Pencarian menggunakan 41 makalah untuk evaluasi  sebelumnya, menunjukkan bahwa model yang digunakan untuk memprediksi tenaga surya adalah eksperimen akademik jangka panjang. Algoritma ELM (Extreme Learning Machine) menjadi pilihan dalam pengelolaan listrik dengan tenaga surya melalui system baterai dibandingkan dengan algoritma JST (Jaringan Syaraf Tiruan).\",\"PeriodicalId\":134510,\"journal\":{\"name\":\"Journal Sensi\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal Sensi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33050/sensi.v9i2.2909\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal Sensi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33050/sensi.v9i2.2909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项研究的目的是通过文献审查的大量数据来分析电池管理系统。随着集成成本的增长、废物管理的日益复杂,对社会环境影响的电力变迁需要利用太阳能的新电网模型。因此,本研究是通过系统识字法审查来预测太阳能与电池系统的电力管理。系统读写评论(SLR)是用来定义和评价一系列论文中的文学作品的。搜索用41篇论文进行先前的评估,表明用来预测太阳能的模型是一个长期的学术实验。ELM算法与JST算法相比,是一种通过电池系统管理太阳能的首选算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Systematic Literature Review on Battery Management Systems and predicting Solar Big Data
Penelitian ini bertujuan untuk menganalisis sistem manajemen baterai dengan memprediksi tenaga surya melalui bigdata ditinjau dari kajian literatur. Dengan adanya pertumbuhan biaya integrasi, pengelolaan limbah yang semakin rumit, variabilitas daya listrik yang berdampak sosio-lingkungan sehingga membutuhkan model sektor listrik baru dengan memanfaatkan tenaga surya. Oleh karenanya penelitian ini merupakan hasil tinjauan literature review dengan prinsip systematic literature review untuk memprediksi tenaga surya dalam pengelolaan listrik dengan sistem baterai.  Metode Systematic Literature Review (SLR) digunakan untuk mendefinisikan dan mengevaluasi literatur dalam rangkaian makalah. Pencarian menggunakan 41 makalah untuk evaluasi  sebelumnya, menunjukkan bahwa model yang digunakan untuk memprediksi tenaga surya adalah eksperimen akademik jangka panjang. Algoritma ELM (Extreme Learning Machine) menjadi pilihan dalam pengelolaan listrik dengan tenaga surya melalui system baterai dibandingkan dengan algoritma JST (Jaringan Syaraf Tiruan).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信