{"title":"基于DSP延迟线和波联合启动器的低复杂度FPGA TDC","authors":"Zijie Wang, Jiajun Lu, J. Núñez-Yáñez","doi":"10.1109/DSD57027.2022.00023","DOIUrl":null,"url":null,"abstract":"High-precision time-to-digital converters (TDCs) are key components for controlling quantum systems and FPGAs have gained popularity for this task thanks to their low-cost and flexibility compared with Application Specific Integrated Circuits (ASICs). This paper investigates a novel FPGA-based TDC architecture that combines a wave union launcher and delay lines constructed with DSP blocks. The configuration achieves a 8.07ps RMS resolution on a low-cost Zynq FPGA with a power usage of only 0.628W. The low power consumption is achieved thanks to a combination of operating frequency and logic resource usage that are lower than other methods, such as multi-chain DSP based TDCs and multi-chain CARRY4 based TDCs.","PeriodicalId":211723,"journal":{"name":"2022 25th Euromicro Conference on Digital System Design (DSD)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Low-complexity FPGA TDC based on a DSP Delay Line and a Wave Union Launcher\",\"authors\":\"Zijie Wang, Jiajun Lu, J. Núñez-Yáñez\",\"doi\":\"10.1109/DSD57027.2022.00023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-precision time-to-digital converters (TDCs) are key components for controlling quantum systems and FPGAs have gained popularity for this task thanks to their low-cost and flexibility compared with Application Specific Integrated Circuits (ASICs). This paper investigates a novel FPGA-based TDC architecture that combines a wave union launcher and delay lines constructed with DSP blocks. The configuration achieves a 8.07ps RMS resolution on a low-cost Zynq FPGA with a power usage of only 0.628W. The low power consumption is achieved thanks to a combination of operating frequency and logic resource usage that are lower than other methods, such as multi-chain DSP based TDCs and multi-chain CARRY4 based TDCs.\",\"PeriodicalId\":211723,\"journal\":{\"name\":\"2022 25th Euromicro Conference on Digital System Design (DSD)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 25th Euromicro Conference on Digital System Design (DSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSD57027.2022.00023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 25th Euromicro Conference on Digital System Design (DSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSD57027.2022.00023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Low-complexity FPGA TDC based on a DSP Delay Line and a Wave Union Launcher
High-precision time-to-digital converters (TDCs) are key components for controlling quantum systems and FPGAs have gained popularity for this task thanks to their low-cost and flexibility compared with Application Specific Integrated Circuits (ASICs). This paper investigates a novel FPGA-based TDC architecture that combines a wave union launcher and delay lines constructed with DSP blocks. The configuration achieves a 8.07ps RMS resolution on a low-cost Zynq FPGA with a power usage of only 0.628W. The low power consumption is achieved thanks to a combination of operating frequency and logic resource usage that are lower than other methods, such as multi-chain DSP based TDCs and multi-chain CARRY4 based TDCs.