一种基于遗传算法的模型辅助匹配和姿态估计集成方法,用于自动视觉检测应用

S. Hati, S. Sengupta
{"title":"一种基于遗传算法的模型辅助匹配和姿态估计集成方法,用于自动视觉检测应用","authors":"S. Hati, S. Sengupta","doi":"10.1109/CEC.2004.1331053","DOIUrl":null,"url":null,"abstract":"We present a genetic algorithm based integrated approach to model-assisted matching and pose estimation for automated visual inspection applications. Unlike the past works reported in literature, this approach does not consider the matching between the model and the image of the object to be essential step prior to pose estimation. A set of matched vertices sequence and poses are hypothesized using a newly proposed composite chromosome structure and these are genetically evolved until a reasonably accurate pose is determined. Our algorithm demonstrates its robustness against noise as well as missing and spurious object vertices.","PeriodicalId":152088,"journal":{"name":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A GA-based integrated approach to model-assisted matching and pose estimation for automated visual inspection applications\",\"authors\":\"S. Hati, S. Sengupta\",\"doi\":\"10.1109/CEC.2004.1331053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a genetic algorithm based integrated approach to model-assisted matching and pose estimation for automated visual inspection applications. Unlike the past works reported in literature, this approach does not consider the matching between the model and the image of the object to be essential step prior to pose estimation. A set of matched vertices sequence and poses are hypothesized using a newly proposed composite chromosome structure and these are genetically evolved until a reasonably accurate pose is determined. Our algorithm demonstrates its robustness against noise as well as missing and spurious object vertices.\",\"PeriodicalId\":152088,\"journal\":{\"name\":\"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2004.1331053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2004.1331053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种基于遗传算法的模型辅助匹配和姿态估计集成方法,用于自动视觉检测应用。与以往文献报道的工作不同,该方法没有将模型与目标图像之间的匹配视为姿态估计之前的必要步骤。一组匹配的顶点序列和姿势是假设使用一个新提出的复合染色体结构和这些遗传进化,直到一个合理的准确的姿势被确定。我们的算法证明了它对噪声以及缺失和虚假目标顶点的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A GA-based integrated approach to model-assisted matching and pose estimation for automated visual inspection applications
We present a genetic algorithm based integrated approach to model-assisted matching and pose estimation for automated visual inspection applications. Unlike the past works reported in literature, this approach does not consider the matching between the model and the image of the object to be essential step prior to pose estimation. A set of matched vertices sequence and poses are hypothesized using a newly proposed composite chromosome structure and these are genetically evolved until a reasonably accurate pose is determined. Our algorithm demonstrates its robustness against noise as well as missing and spurious object vertices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信