通过随机和遗传搜索找到最大流量

Mark F. Bramlette
{"title":"通过随机和遗传搜索找到最大流量","authors":"Mark F. Bramlette","doi":"10.1109/ICEC.1994.349936","DOIUrl":null,"url":null,"abstract":"Solving a maximum flow problem requires finding the greatest balanced flow from a source to a sink in a weighted directional graph. In balanced flow, each node's total input and total output are equal. This paper compares one random and two genetic approaches to finding such solutions. The representation of candidate solutions guarantees balanced flow in all products of mutation and crossover. The method of solution uses a stochastic search (random or genetic) to insure that no link is over capacity, no node has excess output, and each allocation is an integer. Then it achieves balance through a fast deterministic search to remove excess input. This method solved a sample problem in about one-ninth as many generations as a genetic search using penalty functions.<<ETX>>","PeriodicalId":393865,"journal":{"name":"Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Finding maximum flow with random and genetic search\",\"authors\":\"Mark F. Bramlette\",\"doi\":\"10.1109/ICEC.1994.349936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solving a maximum flow problem requires finding the greatest balanced flow from a source to a sink in a weighted directional graph. In balanced flow, each node's total input and total output are equal. This paper compares one random and two genetic approaches to finding such solutions. The representation of candidate solutions guarantees balanced flow in all products of mutation and crossover. The method of solution uses a stochastic search (random or genetic) to insure that no link is over capacity, no node has excess output, and each allocation is an integer. Then it achieves balance through a fast deterministic search to remove excess input. This method solved a sample problem in about one-ninth as many generations as a genetic search using penalty functions.<<ETX>>\",\"PeriodicalId\":393865,\"journal\":{\"name\":\"Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence\",\"volume\":\"125 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEC.1994.349936\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEC.1994.349936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

解决最大流量问题需要在加权方向图中找到从源到汇的最大平衡流量。在均衡流中,每个节点的总投入和总产出相等。本文比较了一种随机方法和两种遗传方法来寻找这类解。候选解的表示保证了所有突变和交叉产物的平衡流。求解方法采用随机搜索(随机或遗传),以确保没有链路容量过剩,没有节点有多余的输出,并且每个分配都是整数。然后通过快速的确定性搜索来消除多余的输入,从而达到平衡。与使用惩罚函数的遗传搜索相比,该方法解决样本问题所需的代数约为九分之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finding maximum flow with random and genetic search
Solving a maximum flow problem requires finding the greatest balanced flow from a source to a sink in a weighted directional graph. In balanced flow, each node's total input and total output are equal. This paper compares one random and two genetic approaches to finding such solutions. The representation of candidate solutions guarantees balanced flow in all products of mutation and crossover. The method of solution uses a stochastic search (random or genetic) to insure that no link is over capacity, no node has excess output, and each allocation is an integer. Then it achieves balance through a fast deterministic search to remove excess input. This method solved a sample problem in about one-ninth as many generations as a genetic search using penalty functions.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信