Vibe检查:增强推荐的社会共振学习

Yin Zhang, Yun He, James Caverlee
{"title":"Vibe检查:增强推荐的社会共振学习","authors":"Yin Zhang, Yun He, James Caverlee","doi":"10.1145/3487351.3488335","DOIUrl":null,"url":null,"abstract":"Social Resonance is a common socio-behavioral phenomenon in which users are more influenced by opinions that have similar vibes. That is, opinions from two different groups of users can mutually reinforce (or resonate with) each other to have an even stronger impact on the user. In this paper, we explore the powerful social resonance effect between social connections and other users in an eCommerce platform to improve recommendation. Specifically, we first formulate an item-aware user influence network that connects users who rate the same item. With the social network and item-aware user influence network, a novel graph-based mutual learning framework is proposed, which captures the resonance influence from both user local correlations and global connections. We then fuse these influence paths to predict the resonance-enhanced user preference towards items. Experiments on public benchmarks show the proposed approach outperforms state-of-the-art social recommendation methods.","PeriodicalId":320904,"journal":{"name":"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vibe check: social resonance learning for enhanced recommendation\",\"authors\":\"Yin Zhang, Yun He, James Caverlee\",\"doi\":\"10.1145/3487351.3488335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social Resonance is a common socio-behavioral phenomenon in which users are more influenced by opinions that have similar vibes. That is, opinions from two different groups of users can mutually reinforce (or resonate with) each other to have an even stronger impact on the user. In this paper, we explore the powerful social resonance effect between social connections and other users in an eCommerce platform to improve recommendation. Specifically, we first formulate an item-aware user influence network that connects users who rate the same item. With the social network and item-aware user influence network, a novel graph-based mutual learning framework is proposed, which captures the resonance influence from both user local correlations and global connections. We then fuse these influence paths to predict the resonance-enhanced user preference towards items. Experiments on public benchmarks show the proposed approach outperforms state-of-the-art social recommendation methods.\",\"PeriodicalId\":320904,\"journal\":{\"name\":\"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3487351.3488335\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3487351.3488335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

社会共鸣是一种常见的社会行为现象,在这种现象中,用户更容易受到具有相似共鸣的观点的影响。也就是说,来自两个不同用户群体的意见可以相互加强(或产生共鸣),从而对用户产生更大的影响。本文探讨了电商平台中社交关系与其他用户之间强大的社会共振效应,以提高推荐效果。具体来说,我们首先构建了一个感知商品的用户影响网络,该网络将对同一商品打分的用户联系在一起。结合社交网络和物品感知用户影响网络,提出了一种新的基于图的互学习框架,该框架从用户局部关联和全局连接两方面捕获共振影响。然后,我们融合这些影响路径来预测共振增强的用户对项目的偏好。公共基准实验表明,该方法优于最先进的社会推荐方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vibe check: social resonance learning for enhanced recommendation
Social Resonance is a common socio-behavioral phenomenon in which users are more influenced by opinions that have similar vibes. That is, opinions from two different groups of users can mutually reinforce (or resonate with) each other to have an even stronger impact on the user. In this paper, we explore the powerful social resonance effect between social connections and other users in an eCommerce platform to improve recommendation. Specifically, we first formulate an item-aware user influence network that connects users who rate the same item. With the social network and item-aware user influence network, a novel graph-based mutual learning framework is proposed, which captures the resonance influence from both user local correlations and global connections. We then fuse these influence paths to predict the resonance-enhanced user preference towards items. Experiments on public benchmarks show the proposed approach outperforms state-of-the-art social recommendation methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信