哈尔谱与二值判据正、反变换的有效算法

B. Falkowski, Chip-Hong Chang
{"title":"哈尔谱与二值判据正、反变换的有效算法","authors":"B. Falkowski, Chip-Hong Chang","doi":"10.1109/PCCC.1994.504160","DOIUrl":null,"url":null,"abstract":"An algorithm has been developed to calculate the Haar transform of Boolean functions from their Binary Decision Diagram (BDD) representation. The method of decomposition of Haar spectral coefficients in terms of the cofactors of Boolean functions that resembles known Shannon decomposition of such functions has been introduced. Based on the above decomposition, a second new algorithm is presented to synthesize ordered Binary Decision Diagram directly from Haar spectrum of Boolean functions.","PeriodicalId":203232,"journal":{"name":"Proceeding of 13th IEEE Annual International Phoenix Conference on Computers and Communications","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Efficient Algorithms for Forward and Inverse Transformations between Haar Spectrum and Binary Decisi\",\"authors\":\"B. Falkowski, Chip-Hong Chang\",\"doi\":\"10.1109/PCCC.1994.504160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An algorithm has been developed to calculate the Haar transform of Boolean functions from their Binary Decision Diagram (BDD) representation. The method of decomposition of Haar spectral coefficients in terms of the cofactors of Boolean functions that resembles known Shannon decomposition of such functions has been introduced. Based on the above decomposition, a second new algorithm is presented to synthesize ordered Binary Decision Diagram directly from Haar spectrum of Boolean functions.\",\"PeriodicalId\":203232,\"journal\":{\"name\":\"Proceeding of 13th IEEE Annual International Phoenix Conference on Computers and Communications\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceeding of 13th IEEE Annual International Phoenix Conference on Computers and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PCCC.1994.504160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceeding of 13th IEEE Annual International Phoenix Conference on Computers and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCCC.1994.504160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

从布尔函数的二进制决策图(BDD)表示出发,提出了一种计算布尔函数Haar变换的算法。介绍了用布尔函数的协因子来分解哈尔谱系数的方法,这种方法类似于已知的布尔函数的香农分解。在此基础上,提出了一种直接从布尔函数的Haar谱合成有序二元决策图的新算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Algorithms for Forward and Inverse Transformations between Haar Spectrum and Binary Decisi
An algorithm has been developed to calculate the Haar transform of Boolean functions from their Binary Decision Diagram (BDD) representation. The method of decomposition of Haar spectral coefficients in terms of the cofactors of Boolean functions that resembles known Shannon decomposition of such functions has been introduced. Based on the above decomposition, a second new algorithm is presented to synthesize ordered Binary Decision Diagram directly from Haar spectrum of Boolean functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信