单样本人脸识别:判别尺度空间与稀疏表示分类

R. Serajeh, A. Mousavinia
{"title":"单样本人脸识别:判别尺度空间与稀疏表示分类","authors":"R. Serajeh, A. Mousavinia","doi":"10.1109/ICCKE.2018.8566424","DOIUrl":null,"url":null,"abstract":"Sparse Representation-based Classification (SRC) is an effective solution of face recognition as there have been many studies around it. However, classical SRC needs a large train data for the galley to produce an over-complete dictionary which result in high accuracy. This paper purposes to show that when there is only one sample per subject for the gallery, the simple linear Discriminant Scaled Space (DSS) can outperform classical SRC and is competitive with new single sample version of that along with significantly less runtime. In addition, it will be shown that SRC methods can be computed on the data proj ected to DSS which result in higher accuracy with less run time. To show the effectiveness of DSS, it is compared with different kinds of SRC on 11 public databases.","PeriodicalId":283700,"journal":{"name":"2018 8th International Conference on Computer and Knowledge Engineering (ICCKE)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Single Sample Face Recognition: Discriminant Scaled Space vs Sparse Representation-Based Classification\",\"authors\":\"R. Serajeh, A. Mousavinia\",\"doi\":\"10.1109/ICCKE.2018.8566424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sparse Representation-based Classification (SRC) is an effective solution of face recognition as there have been many studies around it. However, classical SRC needs a large train data for the galley to produce an over-complete dictionary which result in high accuracy. This paper purposes to show that when there is only one sample per subject for the gallery, the simple linear Discriminant Scaled Space (DSS) can outperform classical SRC and is competitive with new single sample version of that along with significantly less runtime. In addition, it will be shown that SRC methods can be computed on the data proj ected to DSS which result in higher accuracy with less run time. To show the effectiveness of DSS, it is compared with different kinds of SRC on 11 public databases.\",\"PeriodicalId\":283700,\"journal\":{\"name\":\"2018 8th International Conference on Computer and Knowledge Engineering (ICCKE)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 8th International Conference on Computer and Knowledge Engineering (ICCKE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCKE.2018.8566424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 8th International Conference on Computer and Knowledge Engineering (ICCKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCKE.2018.8566424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于稀疏表示的分类(SRC)是人脸识别的一种有效解决方案,目前已有很多相关研究。然而,经典的SRC需要大量的训练数据来生成一个过于完整的字典,从而导致准确率很高。本文的目的是表明,当画廊中每个主题只有一个样本时,简单的线性判别缩放空间(DSS)可以优于经典的SRC,并且与新的单样本版本竞争,并且运行时间显着减少。此外,本文还将表明,SRC方法可以对投射到DSS的数据进行计算,从而在更短的运行时间内获得更高的精度。为了证明DSS的有效性,将其与11个公共数据库中不同类型的SRC进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single Sample Face Recognition: Discriminant Scaled Space vs Sparse Representation-Based Classification
Sparse Representation-based Classification (SRC) is an effective solution of face recognition as there have been many studies around it. However, classical SRC needs a large train data for the galley to produce an over-complete dictionary which result in high accuracy. This paper purposes to show that when there is only one sample per subject for the gallery, the simple linear Discriminant Scaled Space (DSS) can outperform classical SRC and is competitive with new single sample version of that along with significantly less runtime. In addition, it will be shown that SRC methods can be computed on the data proj ected to DSS which result in higher accuracy with less run time. To show the effectiveness of DSS, it is compared with different kinds of SRC on 11 public databases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信