利用隐马尔可夫模型对压缩色度特征进行视频分类

Cheng Lu, M. S. Drew, J. Au
{"title":"利用隐马尔可夫模型对压缩色度特征进行视频分类","authors":"Cheng Lu, M. S. Drew, J. Au","doi":"10.1145/500141.500217","DOIUrl":null,"url":null,"abstract":"Tools for efficiently summarizing and classifying video sequences are indispensable to assist in the synthesis and analysis of digital video. In this paper, we present a method for effective classification of different types of videos that uses the output of a concise video summarization technique that forms a list of keyframes. The summarization is produced by a method recently presented, in which we generate a universal basis on which to project a video frame feature that effectively reduces any video to the same lighting conditions. Each frame is represented by a compressed chromaticity signature. A multi-stage hierarchical clustering method efficiently summarizes any video. Here, we classify TV programs using a trained hidden Markov model, using the keyframe plus temporal features generated in the summaries.","PeriodicalId":416848,"journal":{"name":"MULTIMEDIA '01","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"Classification of summarized videos using hidden markov models on compressed chromaticity signatures\",\"authors\":\"Cheng Lu, M. S. Drew, J. Au\",\"doi\":\"10.1145/500141.500217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tools for efficiently summarizing and classifying video sequences are indispensable to assist in the synthesis and analysis of digital video. In this paper, we present a method for effective classification of different types of videos that uses the output of a concise video summarization technique that forms a list of keyframes. The summarization is produced by a method recently presented, in which we generate a universal basis on which to project a video frame feature that effectively reduces any video to the same lighting conditions. Each frame is represented by a compressed chromaticity signature. A multi-stage hierarchical clustering method efficiently summarizes any video. Here, we classify TV programs using a trained hidden Markov model, using the keyframe plus temporal features generated in the summaries.\",\"PeriodicalId\":416848,\"journal\":{\"name\":\"MULTIMEDIA '01\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MULTIMEDIA '01\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/500141.500217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MULTIMEDIA '01","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/500141.500217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

摘要

有效地对视频序列进行总结和分类的工具对于数字视频的合成和分析是必不可少的。在本文中,我们提出了一种对不同类型的视频进行有效分类的方法,该方法使用简明的视频摘要技术的输出来形成关键帧列表。摘要是由最近提出的一种方法产生的,在这种方法中,我们生成了一个通用的基础,在这个基础上投影视频帧特征,有效地将任何视频减少到相同的照明条件。每一帧由压缩色度特征表示。一种多阶段分层聚类方法可以有效地总结任意视频。在这里,我们使用经过训练的隐马尔可夫模型,利用摘要中生成的关键帧和时间特征对电视节目进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of summarized videos using hidden markov models on compressed chromaticity signatures
Tools for efficiently summarizing and classifying video sequences are indispensable to assist in the synthesis and analysis of digital video. In this paper, we present a method for effective classification of different types of videos that uses the output of a concise video summarization technique that forms a list of keyframes. The summarization is produced by a method recently presented, in which we generate a universal basis on which to project a video frame feature that effectively reduces any video to the same lighting conditions. Each frame is represented by a compressed chromaticity signature. A multi-stage hierarchical clustering method efficiently summarizes any video. Here, we classify TV programs using a trained hidden Markov model, using the keyframe plus temporal features generated in the summaries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信