车网调节服务下的联合最优潮流路径与分散调度

Shiyao Zhang, Ka-Cheong Leung
{"title":"车网调节服务下的联合最优潮流路径与分散调度","authors":"Shiyao Zhang, Ka-Cheong Leung","doi":"10.1109/SmartGridComm.2018.8587593","DOIUrl":null,"url":null,"abstract":"The collection of electric vehicles (EVs) can be regarded as a massive storage to the power grid so as to provide vehicle-to-grid (V2G) ancillary services, such as frequency regulation. In this paper, a novel hierarchical framework for joint optimal power flow routing and decentralized scheduling with V2G regulation services is proposed. First, the optimal power flow is formulated by incorporating with power flow routers (PFRs). The problem is solved through the semidefinite programming (SDP) relaxation to pursue the optimal solution. Second, the scheduling problem with V2G regulation service is proposed as a convex optimization problem. The related decentralized algorithm is then devised in order to find the schedules of EVs. Our simulation results show that voltage regulation is effectively achieved and PFRs can help reduce the apparent power loss of the system significantly. In addition, the decentralized scheduling algorithm with V2G regulation service can smooth out the power fluctuations at the buses attached with EVs.","PeriodicalId":213523,"journal":{"name":"2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Joint Optimal Power Flow Routing and Decentralized Scheduling with Vehicle-to-Grid Regulation Service\",\"authors\":\"Shiyao Zhang, Ka-Cheong Leung\",\"doi\":\"10.1109/SmartGridComm.2018.8587593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The collection of electric vehicles (EVs) can be regarded as a massive storage to the power grid so as to provide vehicle-to-grid (V2G) ancillary services, such as frequency regulation. In this paper, a novel hierarchical framework for joint optimal power flow routing and decentralized scheduling with V2G regulation services is proposed. First, the optimal power flow is formulated by incorporating with power flow routers (PFRs). The problem is solved through the semidefinite programming (SDP) relaxation to pursue the optimal solution. Second, the scheduling problem with V2G regulation service is proposed as a convex optimization problem. The related decentralized algorithm is then devised in order to find the schedules of EVs. Our simulation results show that voltage regulation is effectively achieved and PFRs can help reduce the apparent power loss of the system significantly. In addition, the decentralized scheduling algorithm with V2G regulation service can smooth out the power fluctuations at the buses attached with EVs.\",\"PeriodicalId\":213523,\"journal\":{\"name\":\"2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartGridComm.2018.8587593\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2018.8587593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

电动汽车的集束可以看作是对电网的大规模存储,从而提供车对网(V2G)的辅助服务,如频率调节。本文提出了一种具有V2G调节业务的联合最优潮流路由和分散调度的分层框架。首先,结合潮流路由器(PFRs)制定最优潮流。采用半定规划(SDP)松弛法求解,追求最优解。其次,将具有V2G调节业务的调度问题作为凸优化问题提出。然后设计了相关的去中心化算法,以找到电动汽车的调度。仿真结果表明,PFRs有效地实现了电压调节,显著降低了系统的视在功率损耗。另外,基于V2G调节服务的分布式调度算法可以平滑电动汽车附车母线的功率波动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint Optimal Power Flow Routing and Decentralized Scheduling with Vehicle-to-Grid Regulation Service
The collection of electric vehicles (EVs) can be regarded as a massive storage to the power grid so as to provide vehicle-to-grid (V2G) ancillary services, such as frequency regulation. In this paper, a novel hierarchical framework for joint optimal power flow routing and decentralized scheduling with V2G regulation services is proposed. First, the optimal power flow is formulated by incorporating with power flow routers (PFRs). The problem is solved through the semidefinite programming (SDP) relaxation to pursue the optimal solution. Second, the scheduling problem with V2G regulation service is proposed as a convex optimization problem. The related decentralized algorithm is then devised in order to find the schedules of EVs. Our simulation results show that voltage regulation is effectively achieved and PFRs can help reduce the apparent power loss of the system significantly. In addition, the decentralized scheduling algorithm with V2G regulation service can smooth out the power fluctuations at the buses attached with EVs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信