基于相邻段的随机段模型解码算法及其在LVCSR中的应用

Shouye Peng, Wenju Liu, Huayun Zhang
{"title":"基于相邻段的随机段模型解码算法及其在LVCSR中的应用","authors":"Shouye Peng, Wenju Liu, Huayun Zhang","doi":"10.1109/CCPR.2008.90","DOIUrl":null,"url":null,"abstract":"In the large vocabulary continuous speech recognition system based on stochastic segment model (SSM), the multistage decoding and pruning algorithm could decrease decoding time obviously. Generally, we only decode and prune for one segment each time. In this paper, a decoding algorithm based on neighboring segments is proposed. This algorithm decodes for multi-segments at the same time, so that the threshold of every segment could be highly shared by all the segments in each stage. That means more useless computation would be avoided, and the decoding would become faster. When using this algorithm in LVCSR system, we saved the decoding time of 50% approximately without accuracy loss.","PeriodicalId":292956,"journal":{"name":"2008 Chinese Conference on Pattern Recognition","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic Segment Model Decoding Algorithm Based on Neighboring Segments and its Application in LVCSR\",\"authors\":\"Shouye Peng, Wenju Liu, Huayun Zhang\",\"doi\":\"10.1109/CCPR.2008.90\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the large vocabulary continuous speech recognition system based on stochastic segment model (SSM), the multistage decoding and pruning algorithm could decrease decoding time obviously. Generally, we only decode and prune for one segment each time. In this paper, a decoding algorithm based on neighboring segments is proposed. This algorithm decodes for multi-segments at the same time, so that the threshold of every segment could be highly shared by all the segments in each stage. That means more useless computation would be avoided, and the decoding would become faster. When using this algorithm in LVCSR system, we saved the decoding time of 50% approximately without accuracy loss.\",\"PeriodicalId\":292956,\"journal\":{\"name\":\"2008 Chinese Conference on Pattern Recognition\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Chinese Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCPR.2008.90\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Chinese Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCPR.2008.90","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在基于随机段模型(SSM)的大词汇量连续语音识别系统中,多级译码和剪枝算法可以明显减少译码时间。一般情况下,我们每次只对一个片段进行译码和剪枝。本文提出了一种基于相邻段的译码算法。该算法同时对多个码段进行译码,使得每个码段的阈值能够被每个阶段的所有码段高度共享。这意味着将避免更多无用的计算,解码将变得更快。将该算法应用于LVCSR系统时,在不损失精度的情况下,可节省约50%的译码时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic Segment Model Decoding Algorithm Based on Neighboring Segments and its Application in LVCSR
In the large vocabulary continuous speech recognition system based on stochastic segment model (SSM), the multistage decoding and pruning algorithm could decrease decoding time obviously. Generally, we only decode and prune for one segment each time. In this paper, a decoding algorithm based on neighboring segments is proposed. This algorithm decodes for multi-segments at the same time, so that the threshold of every segment could be highly shared by all the segments in each stage. That means more useless computation would be avoided, and the decoding would become faster. When using this algorithm in LVCSR system, we saved the decoding time of 50% approximately without accuracy loss.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信