全行/列并行内存计算SRAM宏,采用基于电容的5-b输入混合信号计算

Jinseok Lee, Hossein Valavi, Yinqi Tang, N. Verma
{"title":"全行/列并行内存计算SRAM宏,采用基于电容的5-b输入混合信号计算","authors":"Jinseok Lee, Hossein Valavi, Yinqi Tang, N. Verma","doi":"10.23919/VLSICircuits52068.2021.9492444","DOIUrl":null,"url":null,"abstract":"This paper presents an in-memory computing (IMC) macro in 28nm for fully row/column-parallel matrix-vector multiplication (MVM), exploiting precise capacitor-based analog computation to extend from binary input-vector elements to 5-b input-vector elements, for 16x increase in energy efficiency and 5x increase in throughput. The 1152(row)x256(col.) macro employs multi-level input drivers based on a digital-switch DAC implementation, which preserve compute accuracy well beyond the 8-b resolution of the output ADCs, and whose area is halved via a dynamic-range doubling (DRD) technique. The macro achieves the highest reported IMC energy efficiency of 5796 TOPS/W and compute density of 12 TOPS/mm2 (both normalized to 1-b ops). CIFAR-10 image classification is demonstrated with accuracy of 91%, equal to the level of ideal SW implementation.","PeriodicalId":106356,"journal":{"name":"2021 Symposium on VLSI Circuits","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Fully Row/Column-Parallel In-memory Computing SRAM Macro employing Capacitor-based Mixed-signal Computation with 5-b Inputs\",\"authors\":\"Jinseok Lee, Hossein Valavi, Yinqi Tang, N. Verma\",\"doi\":\"10.23919/VLSICircuits52068.2021.9492444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an in-memory computing (IMC) macro in 28nm for fully row/column-parallel matrix-vector multiplication (MVM), exploiting precise capacitor-based analog computation to extend from binary input-vector elements to 5-b input-vector elements, for 16x increase in energy efficiency and 5x increase in throughput. The 1152(row)x256(col.) macro employs multi-level input drivers based on a digital-switch DAC implementation, which preserve compute accuracy well beyond the 8-b resolution of the output ADCs, and whose area is halved via a dynamic-range doubling (DRD) technique. The macro achieves the highest reported IMC energy efficiency of 5796 TOPS/W and compute density of 12 TOPS/mm2 (both normalized to 1-b ops). CIFAR-10 image classification is demonstrated with accuracy of 91%, equal to the level of ideal SW implementation.\",\"PeriodicalId\":106356,\"journal\":{\"name\":\"2021 Symposium on VLSI Circuits\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Symposium on VLSI Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/VLSICircuits52068.2021.9492444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSICircuits52068.2021.9492444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

本文提出了一个28纳米内存计算(IMC)宏,用于完全行/列并行矩阵向量乘法(MVM),利用精确的基于电容的模拟计算,从二进制输入向量元素扩展到5-b输入向量元素,从而提高16倍的能源效率和5倍的吞吐量。1152(row)x256(cold)宏采用基于数字开关DAC实现的多级输入驱动器,其保持的计算精度远远超过输出adc的8-b分辨率,并且其面积通过动态范围加倍(DRD)技术减半。该宏实现了最高的IMC能效(5796 TOPS/W)和计算密度(12 TOPS/mm2)(均归一化为1-b ops)。CIFAR-10图像分类的准确率达到91%,达到理想的软件实现水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fully Row/Column-Parallel In-memory Computing SRAM Macro employing Capacitor-based Mixed-signal Computation with 5-b Inputs
This paper presents an in-memory computing (IMC) macro in 28nm for fully row/column-parallel matrix-vector multiplication (MVM), exploiting precise capacitor-based analog computation to extend from binary input-vector elements to 5-b input-vector elements, for 16x increase in energy efficiency and 5x increase in throughput. The 1152(row)x256(col.) macro employs multi-level input drivers based on a digital-switch DAC implementation, which preserve compute accuracy well beyond the 8-b resolution of the output ADCs, and whose area is halved via a dynamic-range doubling (DRD) technique. The macro achieves the highest reported IMC energy efficiency of 5796 TOPS/W and compute density of 12 TOPS/mm2 (both normalized to 1-b ops). CIFAR-10 image classification is demonstrated with accuracy of 91%, equal to the level of ideal SW implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信