同时操作1000亿个分子神经元的大规模并行处理纳米大脑结构

A. Bandyopadhyay, D. Fujita, R. Pati
{"title":"同时操作1000亿个分子神经元的大规模并行处理纳米大脑结构","authors":"A. Bandyopadhyay, D. Fujita, R. Pati","doi":"10.4018/jnmc.2009010104","DOIUrl":null,"url":null,"abstract":"Molecular machines (MM, Badjic, 2004; Collier, 2000; Jian & Tour, 2003; Koumura & Ferringa, 1999; Ding & Seeman 2006) may resolve three distinct bottlenecks of scientific advancement. Nanofactories (Phoenix, 2003) composed of MM may produce atomically perfect products spending negligible amount of energy (Hess, 2004) thus alleviating the energy crisis. Computers made by MM operating thousands of bits at a time may match biological processors mimicking creativity and intelligence (Hall, 2007), thus far considered as the prerogative of nature. Stateof-the-art brain surgeries are not yet fatal-less, MMs guided by a nano-brain may execute perfect bloodless surgery (Freitas, 2005). Even though all three bottlenecks converge to a single necessity of nano-brain, futurists and molecular engineers have remained silent on this issue. Our recent invention of 16 bit parallel processor is a first step in this direction (Bandyopadhyay, 2008). However, the device operates inside ultra-high vacuum chamber. For practical application, one needs to design a 3 D standalone architecture. Here, we identify the minimum nano-brain functions for practical applications and try to increase the size from 2 nm to 20 μm. To realize this, three major changes are made. First, central control unit (CCU) and external execution units (EU) are modified so that they process information independently,","PeriodicalId":259233,"journal":{"name":"Int. J. Nanotechnol. Mol. Comput.","volume":"305 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Architecture of a Massively Parallel Processing Nano-Brain Operating 100 Billion Molecular Neurons Simultaneously\",\"authors\":\"A. Bandyopadhyay, D. Fujita, R. Pati\",\"doi\":\"10.4018/jnmc.2009010104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Molecular machines (MM, Badjic, 2004; Collier, 2000; Jian & Tour, 2003; Koumura & Ferringa, 1999; Ding & Seeman 2006) may resolve three distinct bottlenecks of scientific advancement. Nanofactories (Phoenix, 2003) composed of MM may produce atomically perfect products spending negligible amount of energy (Hess, 2004) thus alleviating the energy crisis. Computers made by MM operating thousands of bits at a time may match biological processors mimicking creativity and intelligence (Hall, 2007), thus far considered as the prerogative of nature. Stateof-the-art brain surgeries are not yet fatal-less, MMs guided by a nano-brain may execute perfect bloodless surgery (Freitas, 2005). Even though all three bottlenecks converge to a single necessity of nano-brain, futurists and molecular engineers have remained silent on this issue. Our recent invention of 16 bit parallel processor is a first step in this direction (Bandyopadhyay, 2008). However, the device operates inside ultra-high vacuum chamber. For practical application, one needs to design a 3 D standalone architecture. Here, we identify the minimum nano-brain functions for practical applications and try to increase the size from 2 nm to 20 μm. To realize this, three major changes are made. First, central control unit (CCU) and external execution units (EU) are modified so that they process information independently,\",\"PeriodicalId\":259233,\"journal\":{\"name\":\"Int. J. Nanotechnol. Mol. Comput.\",\"volume\":\"305 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Nanotechnol. Mol. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/jnmc.2009010104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Nanotechnol. Mol. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/jnmc.2009010104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

分子机器(MM,巴季奇,2004;科利尔,2000;Jian & Tour, 2003;Koumura & Ferringa, 1999;Ding & Seeman 2006)可以解决科学进步的三个明显瓶颈。纳米工厂(菲尼克斯,2003)组成的MM可以生产原子完美的产品花费微不足道的能量(赫斯,2004),从而缓解能源危机。由MM制造的计算机一次操作数千位,可能与模仿创造力和智能的生物处理器相匹配(Hall, 2007),迄今为止被认为是自然的特权。最先进的脑外科手术还不是没有致命的,由纳米大脑引导的mm可能会执行完美的无血手术(Freitas, 2005)。尽管这三个瓶颈都汇聚成纳米大脑,但未来学家和分子工程师对这个问题一直保持沉默。我们最近发明的16位并行处理器是朝着这个方向迈出的第一步(Bandyopadhyay, 2008)。然而,该设备在超高真空室内运行。为了实际应用,需要设计一个3d独立架构。在这里,我们确定了用于实际应用的最小纳米脑功能,并尝试将尺寸从2 nm增加到20 μm。为了实现这一点,我们做了三个主要的改变。首先,修改中央控制单元(CCU)和外部执行单元(EU),使其独立处理信息;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Architecture of a Massively Parallel Processing Nano-Brain Operating 100 Billion Molecular Neurons Simultaneously
Molecular machines (MM, Badjic, 2004; Collier, 2000; Jian & Tour, 2003; Koumura & Ferringa, 1999; Ding & Seeman 2006) may resolve three distinct bottlenecks of scientific advancement. Nanofactories (Phoenix, 2003) composed of MM may produce atomically perfect products spending negligible amount of energy (Hess, 2004) thus alleviating the energy crisis. Computers made by MM operating thousands of bits at a time may match biological processors mimicking creativity and intelligence (Hall, 2007), thus far considered as the prerogative of nature. Stateof-the-art brain surgeries are not yet fatal-less, MMs guided by a nano-brain may execute perfect bloodless surgery (Freitas, 2005). Even though all three bottlenecks converge to a single necessity of nano-brain, futurists and molecular engineers have remained silent on this issue. Our recent invention of 16 bit parallel processor is a first step in this direction (Bandyopadhyay, 2008). However, the device operates inside ultra-high vacuum chamber. For practical application, one needs to design a 3 D standalone architecture. Here, we identify the minimum nano-brain functions for practical applications and try to increase the size from 2 nm to 20 μm. To realize this, three major changes are made. First, central control unit (CCU) and external execution units (EU) are modified so that they process information independently,
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信