{"title":"同时操作1000亿个分子神经元的大规模并行处理纳米大脑结构","authors":"A. Bandyopadhyay, D. Fujita, R. Pati","doi":"10.4018/jnmc.2009010104","DOIUrl":null,"url":null,"abstract":"Molecular machines (MM, Badjic, 2004; Collier, 2000; Jian & Tour, 2003; Koumura & Ferringa, 1999; Ding & Seeman 2006) may resolve three distinct bottlenecks of scientific advancement. Nanofactories (Phoenix, 2003) composed of MM may produce atomically perfect products spending negligible amount of energy (Hess, 2004) thus alleviating the energy crisis. Computers made by MM operating thousands of bits at a time may match biological processors mimicking creativity and intelligence (Hall, 2007), thus far considered as the prerogative of nature. Stateof-the-art brain surgeries are not yet fatal-less, MMs guided by a nano-brain may execute perfect bloodless surgery (Freitas, 2005). Even though all three bottlenecks converge to a single necessity of nano-brain, futurists and molecular engineers have remained silent on this issue. Our recent invention of 16 bit parallel processor is a first step in this direction (Bandyopadhyay, 2008). However, the device operates inside ultra-high vacuum chamber. For practical application, one needs to design a 3 D standalone architecture. Here, we identify the minimum nano-brain functions for practical applications and try to increase the size from 2 nm to 20 μm. To realize this, three major changes are made. First, central control unit (CCU) and external execution units (EU) are modified so that they process information independently,","PeriodicalId":259233,"journal":{"name":"Int. J. Nanotechnol. Mol. Comput.","volume":"305 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Architecture of a Massively Parallel Processing Nano-Brain Operating 100 Billion Molecular Neurons Simultaneously\",\"authors\":\"A. Bandyopadhyay, D. Fujita, R. Pati\",\"doi\":\"10.4018/jnmc.2009010104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Molecular machines (MM, Badjic, 2004; Collier, 2000; Jian & Tour, 2003; Koumura & Ferringa, 1999; Ding & Seeman 2006) may resolve three distinct bottlenecks of scientific advancement. Nanofactories (Phoenix, 2003) composed of MM may produce atomically perfect products spending negligible amount of energy (Hess, 2004) thus alleviating the energy crisis. Computers made by MM operating thousands of bits at a time may match biological processors mimicking creativity and intelligence (Hall, 2007), thus far considered as the prerogative of nature. Stateof-the-art brain surgeries are not yet fatal-less, MMs guided by a nano-brain may execute perfect bloodless surgery (Freitas, 2005). Even though all three bottlenecks converge to a single necessity of nano-brain, futurists and molecular engineers have remained silent on this issue. Our recent invention of 16 bit parallel processor is a first step in this direction (Bandyopadhyay, 2008). However, the device operates inside ultra-high vacuum chamber. For practical application, one needs to design a 3 D standalone architecture. Here, we identify the minimum nano-brain functions for practical applications and try to increase the size from 2 nm to 20 μm. To realize this, three major changes are made. First, central control unit (CCU) and external execution units (EU) are modified so that they process information independently,\",\"PeriodicalId\":259233,\"journal\":{\"name\":\"Int. J. Nanotechnol. Mol. Comput.\",\"volume\":\"305 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Nanotechnol. Mol. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/jnmc.2009010104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Nanotechnol. Mol. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/jnmc.2009010104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Architecture of a Massively Parallel Processing Nano-Brain Operating 100 Billion Molecular Neurons Simultaneously
Molecular machines (MM, Badjic, 2004; Collier, 2000; Jian & Tour, 2003; Koumura & Ferringa, 1999; Ding & Seeman 2006) may resolve three distinct bottlenecks of scientific advancement. Nanofactories (Phoenix, 2003) composed of MM may produce atomically perfect products spending negligible amount of energy (Hess, 2004) thus alleviating the energy crisis. Computers made by MM operating thousands of bits at a time may match biological processors mimicking creativity and intelligence (Hall, 2007), thus far considered as the prerogative of nature. Stateof-the-art brain surgeries are not yet fatal-less, MMs guided by a nano-brain may execute perfect bloodless surgery (Freitas, 2005). Even though all three bottlenecks converge to a single necessity of nano-brain, futurists and molecular engineers have remained silent on this issue. Our recent invention of 16 bit parallel processor is a first step in this direction (Bandyopadhyay, 2008). However, the device operates inside ultra-high vacuum chamber. For practical application, one needs to design a 3 D standalone architecture. Here, we identify the minimum nano-brain functions for practical applications and try to increase the size from 2 nm to 20 μm. To realize this, three major changes are made. First, central control unit (CCU) and external execution units (EU) are modified so that they process information independently,