关于双曲群的同调性的注解

Matthias Neumann-Brosig, G. Rosenberger
{"title":"关于双曲群的同调性的注解","authors":"Matthias Neumann-Brosig, G. Rosenberger","doi":"10.1515/gcc.2010.012","DOIUrl":null,"url":null,"abstract":"Abstract Hyperbolic groups have been studied in various fields in mathematics. They appear in contexts as diverse as geometric group theory, function theory (as Fuchsian groups) and algebraic topology (as fundamental groups of compact hyperbolic surfaces). Hyperbolic groups possess geometrical properties well suited for the study of homological finiteness conditions. In this paper we will prove some of these results via free resolutions obtained from the Rips-complex.","PeriodicalId":119576,"journal":{"name":"Groups Complex. Cryptol.","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A note on the homology of hyperbolic groups\",\"authors\":\"Matthias Neumann-Brosig, G. Rosenberger\",\"doi\":\"10.1515/gcc.2010.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Hyperbolic groups have been studied in various fields in mathematics. They appear in contexts as diverse as geometric group theory, function theory (as Fuchsian groups) and algebraic topology (as fundamental groups of compact hyperbolic surfaces). Hyperbolic groups possess geometrical properties well suited for the study of homological finiteness conditions. In this paper we will prove some of these results via free resolutions obtained from the Rips-complex.\",\"PeriodicalId\":119576,\"journal\":{\"name\":\"Groups Complex. Cryptol.\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groups Complex. Cryptol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/gcc.2010.012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complex. Cryptol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gcc.2010.012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要双曲群在数学的各个领域得到了广泛的研究。它们出现在各种各样的背景下,如几何群论、函数理论(如Fuchsian群)和代数拓扑(如紧双曲曲面的基本群)。双曲群具有非常适合研究同调有限条件的几何性质。在本文中,我们将通过从rip -complex中获得的自由分辨率来证明其中的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on the homology of hyperbolic groups
Abstract Hyperbolic groups have been studied in various fields in mathematics. They appear in contexts as diverse as geometric group theory, function theory (as Fuchsian groups) and algebraic topology (as fundamental groups of compact hyperbolic surfaces). Hyperbolic groups possess geometrical properties well suited for the study of homological finiteness conditions. In this paper we will prove some of these results via free resolutions obtained from the Rips-complex.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信