基于卫星海面温度场的海流时空分割与估算

P. Tandeo, Silèye O. Ba, Ronan Fablet, B. Chapron, E. Autret
{"title":"基于卫星海面温度场的海流时空分割与估算","authors":"P. Tandeo, Silèye O. Ba, Ronan Fablet, B. Chapron, E. Autret","doi":"10.1109/ICIP.2013.6738483","DOIUrl":null,"url":null,"abstract":"The use of satellite Sea Surface Temperature (SST) fields to retrieve zonal and meridional surface currents (U, V) is now a widespread idea. Since the classical approach involves temporal differencing of SST fields, we investigate in this paper the extent to which mesoscale ocean dynamics may be decomposed into a superposition of dynamical modes, characterized by different linear relationships between surface currents and temperature fields. Based on a completely observation-driven approach, we propose a latent class regression model from local satellite surface currents and patches of SST measurements. Applied to the highly dynamical Agulhas region, we demonstrate and discuss the geophysical relevance of the proposed mixture model to achieve a spatio-temporal segmentation and tracking of the ocean surface dynamical modes. Moreover, we show the accuracy of the proposed model to predict mesoscale surface currents from SST single maps.","PeriodicalId":388385,"journal":{"name":"2013 IEEE International Conference on Image Processing","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Spatio-temporal segmentation and estimation of ocean surface currents from satellite sea surface temperature fields\",\"authors\":\"P. Tandeo, Silèye O. Ba, Ronan Fablet, B. Chapron, E. Autret\",\"doi\":\"10.1109/ICIP.2013.6738483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of satellite Sea Surface Temperature (SST) fields to retrieve zonal and meridional surface currents (U, V) is now a widespread idea. Since the classical approach involves temporal differencing of SST fields, we investigate in this paper the extent to which mesoscale ocean dynamics may be decomposed into a superposition of dynamical modes, characterized by different linear relationships between surface currents and temperature fields. Based on a completely observation-driven approach, we propose a latent class regression model from local satellite surface currents and patches of SST measurements. Applied to the highly dynamical Agulhas region, we demonstrate and discuss the geophysical relevance of the proposed mixture model to achieve a spatio-temporal segmentation and tracking of the ocean surface dynamical modes. Moreover, we show the accuracy of the proposed model to predict mesoscale surface currents from SST single maps.\",\"PeriodicalId\":388385,\"journal\":{\"name\":\"2013 IEEE International Conference on Image Processing\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2013.6738483\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2013.6738483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

利用卫星海温(SST)场反演纬向和经向表面流(U, V)现在是一个广泛的想法。由于经典方法涉及海温场的时间差异,我们在本文中研究了中尺度海洋动力学在多大程度上可以分解为以表面流和温度场之间不同线性关系为特征的动力模式的叠加。基于完全观测驱动的方法,我们提出了一个基于局部卫星表面流和海温测量斑块的潜在类回归模型。应用于高动力的Agulhas地区,我们展示并讨论了所提出的混合模型的地球物理相关性,以实现海洋表面动力模式的时空分割和跟踪。此外,我们还证明了该模型在预测海温单图中尺度地表流方面的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatio-temporal segmentation and estimation of ocean surface currents from satellite sea surface temperature fields
The use of satellite Sea Surface Temperature (SST) fields to retrieve zonal and meridional surface currents (U, V) is now a widespread idea. Since the classical approach involves temporal differencing of SST fields, we investigate in this paper the extent to which mesoscale ocean dynamics may be decomposed into a superposition of dynamical modes, characterized by different linear relationships between surface currents and temperature fields. Based on a completely observation-driven approach, we propose a latent class regression model from local satellite surface currents and patches of SST measurements. Applied to the highly dynamical Agulhas region, we demonstrate and discuss the geophysical relevance of the proposed mixture model to achieve a spatio-temporal segmentation and tracking of the ocean surface dynamical modes. Moreover, we show the accuracy of the proposed model to predict mesoscale surface currents from SST single maps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信