{"title":"学习用人群模拟人群","authors":"Bilas Talukdar, Yunhao Zhang, Tomer Weiss","doi":"10.1145/3588028.3603670","DOIUrl":null,"url":null,"abstract":"Controlling agent behaviors with Reinforcement Learning is of continuing interest in multiple areas. One major focus is to simulate multi-agent crowds that avoid collisions while locomoting to their goals. Although avoiding collisions is important, it is also necessary to capture realistic anticipatory navigation behaviors. We introduce a novel methodology that includes: 1) an RL method for learning an optimal navigational policy, 2) position-based constraints for correcting policy navigational decisions, and 3) a crowd-sourcing framework for selecting policy control parameters. Based on optimally selected parameters, we train a multi-agent navigation policy, which we demonstrate on crowd benchmarks. We compare our method to existing works, and demonstrate that our approach achieves superior multi-agent behaviors.","PeriodicalId":113397,"journal":{"name":"ACM SIGGRAPH 2023 Posters","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning to Simulate Crowds with Crowds\",\"authors\":\"Bilas Talukdar, Yunhao Zhang, Tomer Weiss\",\"doi\":\"10.1145/3588028.3603670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Controlling agent behaviors with Reinforcement Learning is of continuing interest in multiple areas. One major focus is to simulate multi-agent crowds that avoid collisions while locomoting to their goals. Although avoiding collisions is important, it is also necessary to capture realistic anticipatory navigation behaviors. We introduce a novel methodology that includes: 1) an RL method for learning an optimal navigational policy, 2) position-based constraints for correcting policy navigational decisions, and 3) a crowd-sourcing framework for selecting policy control parameters. Based on optimally selected parameters, we train a multi-agent navigation policy, which we demonstrate on crowd benchmarks. We compare our method to existing works, and demonstrate that our approach achieves superior multi-agent behaviors.\",\"PeriodicalId\":113397,\"journal\":{\"name\":\"ACM SIGGRAPH 2023 Posters\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGGRAPH 2023 Posters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3588028.3603670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2023 Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3588028.3603670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Controlling agent behaviors with Reinforcement Learning is of continuing interest in multiple areas. One major focus is to simulate multi-agent crowds that avoid collisions while locomoting to their goals. Although avoiding collisions is important, it is also necessary to capture realistic anticipatory navigation behaviors. We introduce a novel methodology that includes: 1) an RL method for learning an optimal navigational policy, 2) position-based constraints for correcting policy navigational decisions, and 3) a crowd-sourcing framework for selecting policy control parameters. Based on optimally selected parameters, we train a multi-agent navigation policy, which we demonstrate on crowd benchmarks. We compare our method to existing works, and demonstrate that our approach achieves superior multi-agent behaviors.