离散广义系统反馈连接稳定性的无源方法

Jian-Liung Chen, L. Lee
{"title":"离散广义系统反馈连接稳定性的无源方法","authors":"Jian-Liung Chen, L. Lee","doi":"10.1109/CDC.2001.980710","DOIUrl":null,"url":null,"abstract":"The linear matrix inequality (LMI)-based passivity approach to studying both input-output and internal stability problems for feedback connections of discrete-time linear descriptor systems with passive nonlinearities is developed. We show that, under a mild condition, a set of LMIs is equivalent to the strictly positive realness of the linear descriptor systems, and is strong enough to guarantee both the finite gain l/sub 2/-stability and asymptotic hyperstability of the feedback connection.","PeriodicalId":131411,"journal":{"name":"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Passivity approach to feedback connection stability for discrete-time descriptor systems\",\"authors\":\"Jian-Liung Chen, L. Lee\",\"doi\":\"10.1109/CDC.2001.980710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The linear matrix inequality (LMI)-based passivity approach to studying both input-output and internal stability problems for feedback connections of discrete-time linear descriptor systems with passive nonlinearities is developed. We show that, under a mild condition, a set of LMIs is equivalent to the strictly positive realness of the linear descriptor systems, and is strong enough to guarantee both the finite gain l/sub 2/-stability and asymptotic hyperstability of the feedback connection.\",\"PeriodicalId\":131411,\"journal\":{\"name\":\"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2001.980710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2001.980710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

提出了一种基于线性矩阵不等式(LMI)的无源方法,用于研究具有无源非线性的离散线性广义系统反馈连接的输入输出和内部稳定性问题。我们证明了在温和条件下,一组lmi等价于线性广义系统的严格正实在性,并且足够强以保证反馈连接的有限增益l/sub 2/-稳定性和渐近超稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Passivity approach to feedback connection stability for discrete-time descriptor systems
The linear matrix inequality (LMI)-based passivity approach to studying both input-output and internal stability problems for feedback connections of discrete-time linear descriptor systems with passive nonlinearities is developed. We show that, under a mild condition, a set of LMIs is equivalent to the strictly positive realness of the linear descriptor systems, and is strong enough to guarantee both the finite gain l/sub 2/-stability and asymptotic hyperstability of the feedback connection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信