{"title":"高速公路交通量短期预测的时空多元自适应回归样条方法","authors":"Yanyan Xu, Qingjie Kong, Yuncai Liu","doi":"10.1109/ITSC.2013.6728236","DOIUrl":null,"url":null,"abstract":"Current freeway traffic flow prediction techniques pay attention to time series prediction or introduce the upstream adjacent road segments in the short-term prediction model. In this paper, all of the road segments on the freeway are considered as candidates of the independent variables fed into the prediction model. A spatio-temporal multivariate adaptive regression splines (MARS) approach is proposed for the road network analysis and to predict the short-term traffic volume at the observation stations on the freeway. The actual traffic data are collected from a series of observation stations along a freeway in Portland every 15 minutes. In the first phase, the macroscopic dependency relationships of the stations on the freeway are investigated via MARS method. Subsequently the stations most related to the object station are selected and fed into the MARS prediction model to generate the short-term volume. The experiments are carried out on the actual traffic data and the results indicate that the proposed spatio-temporal MARS model can generate superior prediction accuracy in contrast with the historical data based MARS model, the parametric ARIMA, and the nonparametric PPR methods.","PeriodicalId":275768,"journal":{"name":"16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A spatio-temporal multivariate adaptive regression splines approach for short-term freeway traffic volume prediction\",\"authors\":\"Yanyan Xu, Qingjie Kong, Yuncai Liu\",\"doi\":\"10.1109/ITSC.2013.6728236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current freeway traffic flow prediction techniques pay attention to time series prediction or introduce the upstream adjacent road segments in the short-term prediction model. In this paper, all of the road segments on the freeway are considered as candidates of the independent variables fed into the prediction model. A spatio-temporal multivariate adaptive regression splines (MARS) approach is proposed for the road network analysis and to predict the short-term traffic volume at the observation stations on the freeway. The actual traffic data are collected from a series of observation stations along a freeway in Portland every 15 minutes. In the first phase, the macroscopic dependency relationships of the stations on the freeway are investigated via MARS method. Subsequently the stations most related to the object station are selected and fed into the MARS prediction model to generate the short-term volume. The experiments are carried out on the actual traffic data and the results indicate that the proposed spatio-temporal MARS model can generate superior prediction accuracy in contrast with the historical data based MARS model, the parametric ARIMA, and the nonparametric PPR methods.\",\"PeriodicalId\":275768,\"journal\":{\"name\":\"16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2013.6728236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2013.6728236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A spatio-temporal multivariate adaptive regression splines approach for short-term freeway traffic volume prediction
Current freeway traffic flow prediction techniques pay attention to time series prediction or introduce the upstream adjacent road segments in the short-term prediction model. In this paper, all of the road segments on the freeway are considered as candidates of the independent variables fed into the prediction model. A spatio-temporal multivariate adaptive regression splines (MARS) approach is proposed for the road network analysis and to predict the short-term traffic volume at the observation stations on the freeway. The actual traffic data are collected from a series of observation stations along a freeway in Portland every 15 minutes. In the first phase, the macroscopic dependency relationships of the stations on the freeway are investigated via MARS method. Subsequently the stations most related to the object station are selected and fed into the MARS prediction model to generate the short-term volume. The experiments are carried out on the actual traffic data and the results indicate that the proposed spatio-temporal MARS model can generate superior prediction accuracy in contrast with the historical data based MARS model, the parametric ARIMA, and the nonparametric PPR methods.