高速公路交通量短期预测的时空多元自适应回归样条方法

Yanyan Xu, Qingjie Kong, Yuncai Liu
{"title":"高速公路交通量短期预测的时空多元自适应回归样条方法","authors":"Yanyan Xu, Qingjie Kong, Yuncai Liu","doi":"10.1109/ITSC.2013.6728236","DOIUrl":null,"url":null,"abstract":"Current freeway traffic flow prediction techniques pay attention to time series prediction or introduce the upstream adjacent road segments in the short-term prediction model. In this paper, all of the road segments on the freeway are considered as candidates of the independent variables fed into the prediction model. A spatio-temporal multivariate adaptive regression splines (MARS) approach is proposed for the road network analysis and to predict the short-term traffic volume at the observation stations on the freeway. The actual traffic data are collected from a series of observation stations along a freeway in Portland every 15 minutes. In the first phase, the macroscopic dependency relationships of the stations on the freeway are investigated via MARS method. Subsequently the stations most related to the object station are selected and fed into the MARS prediction model to generate the short-term volume. The experiments are carried out on the actual traffic data and the results indicate that the proposed spatio-temporal MARS model can generate superior prediction accuracy in contrast with the historical data based MARS model, the parametric ARIMA, and the nonparametric PPR methods.","PeriodicalId":275768,"journal":{"name":"16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A spatio-temporal multivariate adaptive regression splines approach for short-term freeway traffic volume prediction\",\"authors\":\"Yanyan Xu, Qingjie Kong, Yuncai Liu\",\"doi\":\"10.1109/ITSC.2013.6728236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current freeway traffic flow prediction techniques pay attention to time series prediction or introduce the upstream adjacent road segments in the short-term prediction model. In this paper, all of the road segments on the freeway are considered as candidates of the independent variables fed into the prediction model. A spatio-temporal multivariate adaptive regression splines (MARS) approach is proposed for the road network analysis and to predict the short-term traffic volume at the observation stations on the freeway. The actual traffic data are collected from a series of observation stations along a freeway in Portland every 15 minutes. In the first phase, the macroscopic dependency relationships of the stations on the freeway are investigated via MARS method. Subsequently the stations most related to the object station are selected and fed into the MARS prediction model to generate the short-term volume. The experiments are carried out on the actual traffic data and the results indicate that the proposed spatio-temporal MARS model can generate superior prediction accuracy in contrast with the historical data based MARS model, the parametric ARIMA, and the nonparametric PPR methods.\",\"PeriodicalId\":275768,\"journal\":{\"name\":\"16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2013.6728236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2013.6728236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

目前的高速公路交通流预测技术多注重时间序列预测或在短期预测模型中引入上游相邻路段。本文将高速公路上的所有路段作为自变量的候选者馈入预测模型。提出了一种时空多元自适应回归样条(MARS)方法,用于高速公路路网分析和观测站短期交通量预测。实际的交通数据是每15分钟从波特兰高速公路沿线的一系列观测站收集的。第一阶段,采用MARS方法研究高速公路站点间的宏观依赖关系。随后,选择与目标台站最相关的台站并将其输入MARS预测模型以生成短期量。在实际交通数据上进行了实验,结果表明,与基于历史数据的MARS模型、参数化ARIMA和非参数化PPR方法相比,本文提出的时空MARS模型具有更高的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A spatio-temporal multivariate adaptive regression splines approach for short-term freeway traffic volume prediction
Current freeway traffic flow prediction techniques pay attention to time series prediction or introduce the upstream adjacent road segments in the short-term prediction model. In this paper, all of the road segments on the freeway are considered as candidates of the independent variables fed into the prediction model. A spatio-temporal multivariate adaptive regression splines (MARS) approach is proposed for the road network analysis and to predict the short-term traffic volume at the observation stations on the freeway. The actual traffic data are collected from a series of observation stations along a freeway in Portland every 15 minutes. In the first phase, the macroscopic dependency relationships of the stations on the freeway are investigated via MARS method. Subsequently the stations most related to the object station are selected and fed into the MARS prediction model to generate the short-term volume. The experiments are carried out on the actual traffic data and the results indicate that the proposed spatio-temporal MARS model can generate superior prediction accuracy in contrast with the historical data based MARS model, the parametric ARIMA, and the nonparametric PPR methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信