Kai Qu, Ke Chen, Q. Hu, Junming Zhao, T. Jiang, Yijun Feng
{"title":"深度学习辅助四通道离轴涡旋复用双自旋/频率超表面反设计","authors":"Kai Qu, Ke Chen, Q. Hu, Junming Zhao, T. Jiang, Yijun Feng","doi":"10.1117/1.APN.2.1.016010","DOIUrl":null,"url":null,"abstract":"Abstract. Recently, the metasurfaces for independently controlling the wavefront and amplitude of two orthogonal circularly polarized electromagnetic (EM) waves have been demonstrated to open a way toward spin-multiplexing compact metadevices. However, these metasurfaces are mostly restricted to a single operation frequency band. The main challenge to achieving multiple frequency manipulations stems from the complicated and time-consuming design caused by multifrequency cross talk. To solve this problem, we propose a deep-learning-assisted inverse design method for designing a dual-spin/frequency metasurface with flexible multiplexing of off-axis vortices. By analyzing the cross talk between different spin/frequency channels based on the deep-learning method, we established the internal mapping relationship between the physical parameters of a meta-atom and its phase responses in multichannels, realizing the rapid inverse design of the spin/frequency multiplexing EM device. As a proof of concept, we demonstrated in the microwave region a dual-frequency arbitrary spin-to-orbit angular momentum converter, a dual-frequency off-axis vector vortex multiplexer, and a large-capacity (16-channel) vortex beam generator. The proposed method may provide a compact and efficient platform for the multiplexing of vortices, which may further stimulate their applications in wireless communication and quantum information science.","PeriodicalId":223078,"journal":{"name":"Advanced Photonics Nexus","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Deep-learning-assisted inverse design of dual-spin/frequency metasurface for quad-channel off-axis vortices multiplexing\",\"authors\":\"Kai Qu, Ke Chen, Q. Hu, Junming Zhao, T. Jiang, Yijun Feng\",\"doi\":\"10.1117/1.APN.2.1.016010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Recently, the metasurfaces for independently controlling the wavefront and amplitude of two orthogonal circularly polarized electromagnetic (EM) waves have been demonstrated to open a way toward spin-multiplexing compact metadevices. However, these metasurfaces are mostly restricted to a single operation frequency band. The main challenge to achieving multiple frequency manipulations stems from the complicated and time-consuming design caused by multifrequency cross talk. To solve this problem, we propose a deep-learning-assisted inverse design method for designing a dual-spin/frequency metasurface with flexible multiplexing of off-axis vortices. By analyzing the cross talk between different spin/frequency channels based on the deep-learning method, we established the internal mapping relationship between the physical parameters of a meta-atom and its phase responses in multichannels, realizing the rapid inverse design of the spin/frequency multiplexing EM device. As a proof of concept, we demonstrated in the microwave region a dual-frequency arbitrary spin-to-orbit angular momentum converter, a dual-frequency off-axis vector vortex multiplexer, and a large-capacity (16-channel) vortex beam generator. The proposed method may provide a compact and efficient platform for the multiplexing of vortices, which may further stimulate their applications in wireless communication and quantum information science.\",\"PeriodicalId\":223078,\"journal\":{\"name\":\"Advanced Photonics Nexus\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Photonics Nexus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/1.APN.2.1.016010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics Nexus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/1.APN.2.1.016010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep-learning-assisted inverse design of dual-spin/frequency metasurface for quad-channel off-axis vortices multiplexing
Abstract. Recently, the metasurfaces for independently controlling the wavefront and amplitude of two orthogonal circularly polarized electromagnetic (EM) waves have been demonstrated to open a way toward spin-multiplexing compact metadevices. However, these metasurfaces are mostly restricted to a single operation frequency band. The main challenge to achieving multiple frequency manipulations stems from the complicated and time-consuming design caused by multifrequency cross talk. To solve this problem, we propose a deep-learning-assisted inverse design method for designing a dual-spin/frequency metasurface with flexible multiplexing of off-axis vortices. By analyzing the cross talk between different spin/frequency channels based on the deep-learning method, we established the internal mapping relationship between the physical parameters of a meta-atom and its phase responses in multichannels, realizing the rapid inverse design of the spin/frequency multiplexing EM device. As a proof of concept, we demonstrated in the microwave region a dual-frequency arbitrary spin-to-orbit angular momentum converter, a dual-frequency off-axis vector vortex multiplexer, and a large-capacity (16-channel) vortex beam generator. The proposed method may provide a compact and efficient platform for the multiplexing of vortices, which may further stimulate their applications in wireless communication and quantum information science.