Srikanth Raj Chetupalli, Ashwin Ram, V. Sreenivas Thippur
{"title":"基于TDOA的声源定位鲁棒离线训练神经网络","authors":"Srikanth Raj Chetupalli, Ashwin Ram, V. Sreenivas Thippur","doi":"10.1109/NCC.2018.8600013","DOIUrl":null,"url":null,"abstract":"Passive sound source localization (SSL) using time-difference-of-arrival (TDOA) measurements is a non-linear inversion problem. In this paper, a data-driven approach to SSL using TDOA measurements is considered. A neural network (NN) is viewed as an architecture constrained non-linear function, with its parameters learnt from the training data. We consider a three layer neural network with TDOA measurements between pairs of microphones as input features and source location in the Cartesian coordinate system as output. Experimentally, we show that, NN trained even on noise-less TDOA measurements can achieve good performance for noisy TDOA inputs also. These performances are better than the traditional spherical interpolation (SI) method. We show that the NN trained offline using simulated TDOA measurements, performs better than the SI method, on real-life speech signals in a simulated enclosure.","PeriodicalId":121544,"journal":{"name":"2018 Twenty Fourth National Conference on Communications (NCC)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Robust offline trained neural network for TDOA based sound source localization\",\"authors\":\"Srikanth Raj Chetupalli, Ashwin Ram, V. Sreenivas Thippur\",\"doi\":\"10.1109/NCC.2018.8600013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Passive sound source localization (SSL) using time-difference-of-arrival (TDOA) measurements is a non-linear inversion problem. In this paper, a data-driven approach to SSL using TDOA measurements is considered. A neural network (NN) is viewed as an architecture constrained non-linear function, with its parameters learnt from the training data. We consider a three layer neural network with TDOA measurements between pairs of microphones as input features and source location in the Cartesian coordinate system as output. Experimentally, we show that, NN trained even on noise-less TDOA measurements can achieve good performance for noisy TDOA inputs also. These performances are better than the traditional spherical interpolation (SI) method. We show that the NN trained offline using simulated TDOA measurements, performs better than the SI method, on real-life speech signals in a simulated enclosure.\",\"PeriodicalId\":121544,\"journal\":{\"name\":\"2018 Twenty Fourth National Conference on Communications (NCC)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Twenty Fourth National Conference on Communications (NCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCC.2018.8600013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Twenty Fourth National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2018.8600013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robust offline trained neural network for TDOA based sound source localization
Passive sound source localization (SSL) using time-difference-of-arrival (TDOA) measurements is a non-linear inversion problem. In this paper, a data-driven approach to SSL using TDOA measurements is considered. A neural network (NN) is viewed as an architecture constrained non-linear function, with its parameters learnt from the training data. We consider a three layer neural network with TDOA measurements between pairs of microphones as input features and source location in the Cartesian coordinate system as output. Experimentally, we show that, NN trained even on noise-less TDOA measurements can achieve good performance for noisy TDOA inputs also. These performances are better than the traditional spherical interpolation (SI) method. We show that the NN trained offline using simulated TDOA measurements, performs better than the SI method, on real-life speech signals in a simulated enclosure.