{"title":"低损耗对称慢波传输线的设计与建模","authors":"Amin Kianinejad, Zhi Ning Chen, C. Qiu","doi":"10.1109/APMC.2015.7413234","DOIUrl":null,"url":null,"abstract":"This paper theoretically models and experimentally verifies a low-loss spoof surface plasmon (SSP) mode-based transmission line. A circuit model is proposed for a symmetric SSP structure and the dispersion curve, cut off frequency and Bloch impedance of the periodic structure are calculated. A compact mode converter is proposed and verified experimentally for the connection to coplanar waveguides (CPWs) to form a low-loss slow-wave transmission line (SW-TL). The proposed design is compared with a conventional transmission line and its excellent performance is experimentally evidenced. Operating as a low loss TL, the SW-TL is ready for possible MMIC applications, taking advantage of its ultrathin planarity, highly confined fields, and flexible structure.","PeriodicalId":269888,"journal":{"name":"2015 Asia-Pacific Microwave Conference (APMC)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Design and modeling of low-loss symmetric slow-wave transmission lines\",\"authors\":\"Amin Kianinejad, Zhi Ning Chen, C. Qiu\",\"doi\":\"10.1109/APMC.2015.7413234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper theoretically models and experimentally verifies a low-loss spoof surface plasmon (SSP) mode-based transmission line. A circuit model is proposed for a symmetric SSP structure and the dispersion curve, cut off frequency and Bloch impedance of the periodic structure are calculated. A compact mode converter is proposed and verified experimentally for the connection to coplanar waveguides (CPWs) to form a low-loss slow-wave transmission line (SW-TL). The proposed design is compared with a conventional transmission line and its excellent performance is experimentally evidenced. Operating as a low loss TL, the SW-TL is ready for possible MMIC applications, taking advantage of its ultrathin planarity, highly confined fields, and flexible structure.\",\"PeriodicalId\":269888,\"journal\":{\"name\":\"2015 Asia-Pacific Microwave Conference (APMC)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Asia-Pacific Microwave Conference (APMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APMC.2015.7413234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Asia-Pacific Microwave Conference (APMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APMC.2015.7413234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and modeling of low-loss symmetric slow-wave transmission lines
This paper theoretically models and experimentally verifies a low-loss spoof surface plasmon (SSP) mode-based transmission line. A circuit model is proposed for a symmetric SSP structure and the dispersion curve, cut off frequency and Bloch impedance of the periodic structure are calculated. A compact mode converter is proposed and verified experimentally for the connection to coplanar waveguides (CPWs) to form a low-loss slow-wave transmission line (SW-TL). The proposed design is compared with a conventional transmission line and its excellent performance is experimentally evidenced. Operating as a low loss TL, the SW-TL is ready for possible MMIC applications, taking advantage of its ultrathin planarity, highly confined fields, and flexible structure.