基于前馈神经网络的线性系统多变量控制

A. Bulsari
{"title":"基于前馈神经网络的线性系统多变量控制","authors":"A. Bulsari","doi":"10.1109/CCA.1993.348271","DOIUrl":null,"url":null,"abstract":"Artificial neural networks have been applied to several control problems. However, most of those are single input, single output systems. A multivariable control of a linear process is considered in this paper. The advantage of using neural networks lie in their ability to learn the process dynamics from the observations of the gross behaviour of the process, without a mathematical model. The linear process was controlled well using neural networks. The performance does not improve by using past values of the state variables.<<ETX>>","PeriodicalId":276779,"journal":{"name":"Proceedings of IEEE International Conference on Control and Applications","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multivariable control of a linear system using feed-forward neural networks\",\"authors\":\"A. Bulsari\",\"doi\":\"10.1109/CCA.1993.348271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial neural networks have been applied to several control problems. However, most of those are single input, single output systems. A multivariable control of a linear process is considered in this paper. The advantage of using neural networks lie in their ability to learn the process dynamics from the observations of the gross behaviour of the process, without a mathematical model. The linear process was controlled well using neural networks. The performance does not improve by using past values of the state variables.<<ETX>>\",\"PeriodicalId\":276779,\"journal\":{\"name\":\"Proceedings of IEEE International Conference on Control and Applications\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE International Conference on Control and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCA.1993.348271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE International Conference on Control and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.1993.348271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人工神经网络已经应用于许多控制问题。然而,其中大多数是单输入,单输出系统。研究一类线性过程的多变量控制问题。使用神经网络的优势在于它们能够通过对过程总体行为的观察来学习过程动力学,而无需数学模型。利用神经网络对线性过程进行了很好的控制。使用状态变量的过去值不会提高性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multivariable control of a linear system using feed-forward neural networks
Artificial neural networks have been applied to several control problems. However, most of those are single input, single output systems. A multivariable control of a linear process is considered in this paper. The advantage of using neural networks lie in their ability to learn the process dynamics from the observations of the gross behaviour of the process, without a mathematical model. The linear process was controlled well using neural networks. The performance does not improve by using past values of the state variables.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信