波浪能预测的混合机器学习方法

Naveen Kumar Kodanda Pani, Vijeta Ashok Jha, Linquan Bai, L. Cheng, Tiefu Zhao
{"title":"波浪能预测的混合机器学习方法","authors":"Naveen Kumar Kodanda Pani, Vijeta Ashok Jha, Linquan Bai, L. Cheng, Tiefu Zhao","doi":"10.1109/NAPS52732.2021.9654609","DOIUrl":null,"url":null,"abstract":"Significant wave height and wave period are important parameters of statistical distribution when it comes to ocean engineering applications. The accuracy of wave energy forecasting is important for power production and grid integration. A Stacking Regressor-based hybrid machine learning model integrating Extreme Gradient Boosting model (XGBoost) and Decision Tree (DT) is proposed in this paper for wave energy forecasting. The prediction parameters are selected as input variables based on a correlation study for predicting the wave height and wave period using the hybrid learning model. The forecast wave height and wave period are further used to calculate the wave energy flux and wave power production. The results show that the hybrid model outperforms other ML models such as XGBoost, DT regressor, K-Nearest Neighbour (KNN), and linear regression, in forecasting wave energy using site data of a location in North Carolina coast.","PeriodicalId":123077,"journal":{"name":"2021 North American Power Symposium (NAPS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Hybrid Machine Learning Approach to Wave Energy Forecasting\",\"authors\":\"Naveen Kumar Kodanda Pani, Vijeta Ashok Jha, Linquan Bai, L. Cheng, Tiefu Zhao\",\"doi\":\"10.1109/NAPS52732.2021.9654609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Significant wave height and wave period are important parameters of statistical distribution when it comes to ocean engineering applications. The accuracy of wave energy forecasting is important for power production and grid integration. A Stacking Regressor-based hybrid machine learning model integrating Extreme Gradient Boosting model (XGBoost) and Decision Tree (DT) is proposed in this paper for wave energy forecasting. The prediction parameters are selected as input variables based on a correlation study for predicting the wave height and wave period using the hybrid learning model. The forecast wave height and wave period are further used to calculate the wave energy flux and wave power production. The results show that the hybrid model outperforms other ML models such as XGBoost, DT regressor, K-Nearest Neighbour (KNN), and linear regression, in forecasting wave energy using site data of a location in North Carolina coast.\",\"PeriodicalId\":123077,\"journal\":{\"name\":\"2021 North American Power Symposium (NAPS)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 North American Power Symposium (NAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAPS52732.2021.9654609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 North American Power Symposium (NAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAPS52732.2021.9654609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在海洋工程应用中,有效波高和有效波周期是统计分布的重要参数。波浪能预报的准确性对电力生产和并网具有重要意义。提出了一种基于叠加回归器的混合机器学习模型,该模型将极限梯度增强模型(XGBoost)与决策树(DT)相结合,用于波浪能预测。基于混合学习模型预测波高和波周期的相关性研究,选择预测参数作为输入变量。利用预报的波高和波周期计算波浪能通量和波浪能产量。结果表明,混合模型在利用北卡罗莱纳州海岸某地点的现场数据预测波浪能方面优于其他ML模型,如XGBoost、DT回归、k -近邻(KNN)和线性回归。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Hybrid Machine Learning Approach to Wave Energy Forecasting
Significant wave height and wave period are important parameters of statistical distribution when it comes to ocean engineering applications. The accuracy of wave energy forecasting is important for power production and grid integration. A Stacking Regressor-based hybrid machine learning model integrating Extreme Gradient Boosting model (XGBoost) and Decision Tree (DT) is proposed in this paper for wave energy forecasting. The prediction parameters are selected as input variables based on a correlation study for predicting the wave height and wave period using the hybrid learning model. The forecast wave height and wave period are further used to calculate the wave energy flux and wave power production. The results show that the hybrid model outperforms other ML models such as XGBoost, DT regressor, K-Nearest Neighbour (KNN), and linear regression, in forecasting wave energy using site data of a location in North Carolina coast.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信