EO/IR系统的V-NIIRS融合建模

Erik Blasch, B. Kahler
{"title":"EO/IR系统的V-NIIRS融合建模","authors":"Erik Blasch, B. Kahler","doi":"10.1109/NAECON.2015.7443033","DOIUrl":null,"url":null,"abstract":"The Video National Imagery Interpretability Rating Scale (V-NIIRS) is an emerging standard of the Motion Imagery Standards Board (MISB). V-NIIRS extends NIIRS to from image-based scene characterization to streaming video for image quality assessment of object recognition. To apply V-NIIRS for image fusion, there is a need to understand the operating conditions of the sensor type, environmental phenomenon, and target behavior (SET). In this paper, we explore V-NIIRS as related to resolution, ground sampling distance, and probability of detection, recognition, and identification success. In a modeling analysis, we determine the issues and capabilities of using V-NIIRS video quality ratings to determine task success. Scenarios are provided that allow one to determine the V-NIIRS requirement for a given operational parameter.","PeriodicalId":133804,"journal":{"name":"2015 National Aerospace and Electronics Conference (NAECON)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"V-NIIRS fusion modeling for EO/IR systems\",\"authors\":\"Erik Blasch, B. Kahler\",\"doi\":\"10.1109/NAECON.2015.7443033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Video National Imagery Interpretability Rating Scale (V-NIIRS) is an emerging standard of the Motion Imagery Standards Board (MISB). V-NIIRS extends NIIRS to from image-based scene characterization to streaming video for image quality assessment of object recognition. To apply V-NIIRS for image fusion, there is a need to understand the operating conditions of the sensor type, environmental phenomenon, and target behavior (SET). In this paper, we explore V-NIIRS as related to resolution, ground sampling distance, and probability of detection, recognition, and identification success. In a modeling analysis, we determine the issues and capabilities of using V-NIIRS video quality ratings to determine task success. Scenarios are provided that allow one to determine the V-NIIRS requirement for a given operational parameter.\",\"PeriodicalId\":133804,\"journal\":{\"name\":\"2015 National Aerospace and Electronics Conference (NAECON)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 National Aerospace and Electronics Conference (NAECON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAECON.2015.7443033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 National Aerospace and Electronics Conference (NAECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.2015.7443033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

视频国家图像可解释性评定量表(V-NIIRS)是运动图像标准委员会(MISB)的一个新兴标准。V-NIIRS将NIIRS扩展到从基于图像的场景表征到用于物体识别的图像质量评估的流视频。为了将V-NIIRS应用于图像融合,需要了解传感器类型、环境现象和目标行为(SET)的运行条件。在本文中,我们探讨了V-NIIRS与分辨率、地面采样距离、检测、识别和识别成功概率的关系。在建模分析中,我们确定了使用V-NIIRS视频质量评级来确定任务成功的问题和能力。提供了允许确定给定操作参数的V-NIIRS要求的场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
V-NIIRS fusion modeling for EO/IR systems
The Video National Imagery Interpretability Rating Scale (V-NIIRS) is an emerging standard of the Motion Imagery Standards Board (MISB). V-NIIRS extends NIIRS to from image-based scene characterization to streaming video for image quality assessment of object recognition. To apply V-NIIRS for image fusion, there is a need to understand the operating conditions of the sensor type, environmental phenomenon, and target behavior (SET). In this paper, we explore V-NIIRS as related to resolution, ground sampling distance, and probability of detection, recognition, and identification success. In a modeling analysis, we determine the issues and capabilities of using V-NIIRS video quality ratings to determine task success. Scenarios are provided that allow one to determine the V-NIIRS requirement for a given operational parameter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信