改进的HBA元启发式

Fatima Bekaddour, Amine Chikh
{"title":"改进的HBA元启发式","authors":"Fatima Bekaddour, Amine Chikh","doi":"10.1504/IJRIS.2017.10007141","DOIUrl":null,"url":null,"abstract":"As simple and effective optimisation approach, homogeneity-based algorithm (HBA) is one of the recent metaheuristics, proposed to minimise the total misclassification cost of data mining approaches. However, one problem is that HBA does not adopt computational complexity of the used data mining technique. This is due to the way objective function is defined. So, in this paper, we have proposed an improved HBA (IHBA), which is utilising a modified objective function that compute the computational complexity of the used classification method. We also test several clustering techniques as HBA parameters tuning, in order to enhance classifiers' performance. We have tested IHBA on different benchmarks and the obtained results show the effectiveness of the proposed method.","PeriodicalId":360794,"journal":{"name":"Int. J. Reason. based Intell. Syst.","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved HBA metaheuristic\",\"authors\":\"Fatima Bekaddour, Amine Chikh\",\"doi\":\"10.1504/IJRIS.2017.10007141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As simple and effective optimisation approach, homogeneity-based algorithm (HBA) is one of the recent metaheuristics, proposed to minimise the total misclassification cost of data mining approaches. However, one problem is that HBA does not adopt computational complexity of the used data mining technique. This is due to the way objective function is defined. So, in this paper, we have proposed an improved HBA (IHBA), which is utilising a modified objective function that compute the computational complexity of the used classification method. We also test several clustering techniques as HBA parameters tuning, in order to enhance classifiers' performance. We have tested IHBA on different benchmarks and the obtained results show the effectiveness of the proposed method.\",\"PeriodicalId\":360794,\"journal\":{\"name\":\"Int. J. Reason. based Intell. Syst.\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Reason. based Intell. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJRIS.2017.10007141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Reason. based Intell. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJRIS.2017.10007141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于同质性算法(HBA)作为一种简单有效的优化方法,是最近提出的一种元启发式算法,旨在最大限度地降低数据挖掘方法的总误分类成本。然而,HBA的一个问题是没有考虑到所使用的数据挖掘技术的计算复杂性。这是由于目标函数的定义方式。因此,在本文中,我们提出了一种改进的HBA (IHBA),它利用一个改进的目标函数来计算所使用分类方法的计算复杂度。我们还测试了几种聚类技术作为HBA参数调优,以提高分类器的性能。我们在不同的基准测试上对IHBA进行了测试,得到的结果表明了所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improved HBA metaheuristic
As simple and effective optimisation approach, homogeneity-based algorithm (HBA) is one of the recent metaheuristics, proposed to minimise the total misclassification cost of data mining approaches. However, one problem is that HBA does not adopt computational complexity of the used data mining technique. This is due to the way objective function is defined. So, in this paper, we have proposed an improved HBA (IHBA), which is utilising a modified objective function that compute the computational complexity of the used classification method. We also test several clustering techniques as HBA parameters tuning, in order to enhance classifiers' performance. We have tested IHBA on different benchmarks and the obtained results show the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信