基于经验模态分解和集成深度卷积神经网络的剩余使用寿命估计

Qingfeng Yao, Tianji Yang, Zhi Liu, Zeyu Zheng
{"title":"基于经验模态分解和集成深度卷积神经网络的剩余使用寿命估计","authors":"Qingfeng Yao, Tianji Yang, Zhi Liu, Zeyu Zheng","doi":"10.1109/ICPHM.2019.8819373","DOIUrl":null,"url":null,"abstract":"Bearing remaining useful life (RUL) prediction plays a key role in guaranteeing safe operation and reducing maintenance costs. In this paper, we present a novel deep learning method for RUL estimation approach through time Empirical Mode Decomposition (EMD) and Convolutional Neural Network (CNN). EMD can reveal the nonstationary property of bearing degradation signals effectively. After acquiring time-series degradation signals, namely Intrinsic Mode Functions (IMF), we can utilize the featured information as the input of Convolution layer of models. Here, we introduce an EMD-CNN model structure, which keeps the global and local information synchronously compared to a traditional CNN. In order to get a more accurate prediction, an ensemble model with several weighting methods are proposed, where the experiment indicates an improvement of performance.","PeriodicalId":113460,"journal":{"name":"2019 IEEE International Conference on Prognostics and Health Management (ICPHM)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Remaining Useful Life Estimation by Empirical Mode Decomposition and Ensemble Deep Convolution Neural Networks\",\"authors\":\"Qingfeng Yao, Tianji Yang, Zhi Liu, Zeyu Zheng\",\"doi\":\"10.1109/ICPHM.2019.8819373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bearing remaining useful life (RUL) prediction plays a key role in guaranteeing safe operation and reducing maintenance costs. In this paper, we present a novel deep learning method for RUL estimation approach through time Empirical Mode Decomposition (EMD) and Convolutional Neural Network (CNN). EMD can reveal the nonstationary property of bearing degradation signals effectively. After acquiring time-series degradation signals, namely Intrinsic Mode Functions (IMF), we can utilize the featured information as the input of Convolution layer of models. Here, we introduce an EMD-CNN model structure, which keeps the global and local information synchronously compared to a traditional CNN. In order to get a more accurate prediction, an ensemble model with several weighting methods are proposed, where the experiment indicates an improvement of performance.\",\"PeriodicalId\":113460,\"journal\":{\"name\":\"2019 IEEE International Conference on Prognostics and Health Management (ICPHM)\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Prognostics and Health Management (ICPHM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPHM.2019.8819373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Prognostics and Health Management (ICPHM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPHM.2019.8819373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

轴承剩余使用寿命(RUL)预测对于保证安全运行和降低维修成本具有关键作用。本文提出了一种基于时间经验模态分解(EMD)和卷积神经网络(CNN)的深度学习RUL估计方法。EMD能有效地揭示轴承退化信号的非平稳性。在获取时间序列退化信号即本征模态函数(IMF)后,我们可以利用特征信息作为模型卷积层的输入。在此,我们引入了一种EMD-CNN模型结构,与传统的CNN相比,它可以同步保持全局和局部信息。为了获得更准确的预测,提出了一种包含多种加权方法的集成模型,实验表明该模型的性能有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Remaining Useful Life Estimation by Empirical Mode Decomposition and Ensemble Deep Convolution Neural Networks
Bearing remaining useful life (RUL) prediction plays a key role in guaranteeing safe operation and reducing maintenance costs. In this paper, we present a novel deep learning method for RUL estimation approach through time Empirical Mode Decomposition (EMD) and Convolutional Neural Network (CNN). EMD can reveal the nonstationary property of bearing degradation signals effectively. After acquiring time-series degradation signals, namely Intrinsic Mode Functions (IMF), we can utilize the featured information as the input of Convolution layer of models. Here, we introduce an EMD-CNN model structure, which keeps the global and local information synchronously compared to a traditional CNN. In order to get a more accurate prediction, an ensemble model with several weighting methods are proposed, where the experiment indicates an improvement of performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信