用于卫星图像处理检测的生成式自回归集成

D. M. Montserrat, J'anos Horv'ath, S. Yarlagadda, F. Zhu, E. Delp
{"title":"用于卫星图像处理检测的生成式自回归集成","authors":"D. M. Montserrat, J'anos Horv'ath, S. Yarlagadda, F. Zhu, E. Delp","doi":"10.1109/WIFS49906.2020.9360909","DOIUrl":null,"url":null,"abstract":"Satellite imagery is becoming increasingly accessible due to the growing number of orbiting commercial satellites. Many applications make use of such images: agricultural management, meteorological prediction, damage assessment from natural disasters, or cartography are some of the examples. Unfortunately, these images can be easily tampered and modified with image manipulation tools damaging downstream applications. Because the nature of the manipulation applied to the image is typically unknown, unsupervised methods that don’t require prior knowledge of the tampering techniques used are preferred. In this paper, we use ensembles of generative autoregressive models to model the distribution of the pixels of the image in order to detect potential manipulations. We evaluate the performance of the presented approach obtaining accurate localization results compared to previously presented approaches.","PeriodicalId":354881,"journal":{"name":"2020 IEEE International Workshop on Information Forensics and Security (WIFS)","volume":"391 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Generative Autoregressive Ensembles for Satellite Imagery Manipulation Detection\",\"authors\":\"D. M. Montserrat, J'anos Horv'ath, S. Yarlagadda, F. Zhu, E. Delp\",\"doi\":\"10.1109/WIFS49906.2020.9360909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Satellite imagery is becoming increasingly accessible due to the growing number of orbiting commercial satellites. Many applications make use of such images: agricultural management, meteorological prediction, damage assessment from natural disasters, or cartography are some of the examples. Unfortunately, these images can be easily tampered and modified with image manipulation tools damaging downstream applications. Because the nature of the manipulation applied to the image is typically unknown, unsupervised methods that don’t require prior knowledge of the tampering techniques used are preferred. In this paper, we use ensembles of generative autoregressive models to model the distribution of the pixels of the image in order to detect potential manipulations. We evaluate the performance of the presented approach obtaining accurate localization results compared to previously presented approaches.\",\"PeriodicalId\":354881,\"journal\":{\"name\":\"2020 IEEE International Workshop on Information Forensics and Security (WIFS)\",\"volume\":\"391 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Workshop on Information Forensics and Security (WIFS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIFS49906.2020.9360909\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Workshop on Information Forensics and Security (WIFS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIFS49906.2020.9360909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

由于轨道商业卫星的数量不断增加,卫星图像越来越容易获得。许多应用程序都使用这样的图像:农业管理、气象预测、自然灾害的损害评估或制图就是其中的一些例子。不幸的是,这些图像很容易被破坏下游应用程序的图像处理工具篡改和修改。由于应用于图像的操作的性质通常是未知的,因此不需要事先了解所使用的篡改技术的无监督方法是首选的。在本文中,我们使用生成自回归模型的集合来模拟图像像素的分布,以检测潜在的操作。与先前提出的方法相比,我们评估了所提出方法的性能,获得了准确的定位结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generative Autoregressive Ensembles for Satellite Imagery Manipulation Detection
Satellite imagery is becoming increasingly accessible due to the growing number of orbiting commercial satellites. Many applications make use of such images: agricultural management, meteorological prediction, damage assessment from natural disasters, or cartography are some of the examples. Unfortunately, these images can be easily tampered and modified with image manipulation tools damaging downstream applications. Because the nature of the manipulation applied to the image is typically unknown, unsupervised methods that don’t require prior knowledge of the tampering techniques used are preferred. In this paper, we use ensembles of generative autoregressive models to model the distribution of the pixels of the image in order to detect potential manipulations. We evaluate the performance of the presented approach obtaining accurate localization results compared to previously presented approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信