{"title":"通过混合网格划分和粗糙集方法优化数据集分类,生成模糊规则","authors":"Randrianja Velo, Jérôme Tamatave, Solofo Sahambala","doi":"10.35335/emod.v17i2.22","DOIUrl":null,"url":null,"abstract":"This research presents a novel approach for optimizing dataset classification through the integration of a hybrid grid partition and rough set method for fuzzy rule generation. The objective is to improve classification accuracy and interpretability while effectively handling uncertainty in the dataset. The proposed approach combines grid partitioning, rough set theory, and fuzzy logic to identify relevant attributes within each grid cell, generate accurate fuzzy rules, and perform classification based on fuzzy inference. The research demonstrates the improved accuracy of the hybrid approach compared to traditional methods, along with enhanced interpretability of the generated fuzzy rules. The scalability and generalizability of the approach are validated through its application to a case example in customer churn prediction in the telecommunications industry. However, certain limitations, such as the selection of the partitioning scheme, computational complexity, and handling of missing data, need to be considered. Further research is required to address these limitations and benchmark the approach against state-of-the-art techniques. The proposed hybrid approach contributes to the field of dataset classification by offering an effective and interpretable methodology for improved classification performance and actionable insights in real-world applications","PeriodicalId":262913,"journal":{"name":"International Journal of Enterprise Modelling","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing dataset classification through hybrid grid partition and rough set method for fuzzy rule generation\",\"authors\":\"Randrianja Velo, Jérôme Tamatave, Solofo Sahambala\",\"doi\":\"10.35335/emod.v17i2.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research presents a novel approach for optimizing dataset classification through the integration of a hybrid grid partition and rough set method for fuzzy rule generation. The objective is to improve classification accuracy and interpretability while effectively handling uncertainty in the dataset. The proposed approach combines grid partitioning, rough set theory, and fuzzy logic to identify relevant attributes within each grid cell, generate accurate fuzzy rules, and perform classification based on fuzzy inference. The research demonstrates the improved accuracy of the hybrid approach compared to traditional methods, along with enhanced interpretability of the generated fuzzy rules. The scalability and generalizability of the approach are validated through its application to a case example in customer churn prediction in the telecommunications industry. However, certain limitations, such as the selection of the partitioning scheme, computational complexity, and handling of missing data, need to be considered. Further research is required to address these limitations and benchmark the approach against state-of-the-art techniques. The proposed hybrid approach contributes to the field of dataset classification by offering an effective and interpretable methodology for improved classification performance and actionable insights in real-world applications\",\"PeriodicalId\":262913,\"journal\":{\"name\":\"International Journal of Enterprise Modelling\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Enterprise Modelling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35335/emod.v17i2.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Enterprise Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35335/emod.v17i2.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimizing dataset classification through hybrid grid partition and rough set method for fuzzy rule generation
This research presents a novel approach for optimizing dataset classification through the integration of a hybrid grid partition and rough set method for fuzzy rule generation. The objective is to improve classification accuracy and interpretability while effectively handling uncertainty in the dataset. The proposed approach combines grid partitioning, rough set theory, and fuzzy logic to identify relevant attributes within each grid cell, generate accurate fuzzy rules, and perform classification based on fuzzy inference. The research demonstrates the improved accuracy of the hybrid approach compared to traditional methods, along with enhanced interpretability of the generated fuzzy rules. The scalability and generalizability of the approach are validated through its application to a case example in customer churn prediction in the telecommunications industry. However, certain limitations, such as the selection of the partitioning scheme, computational complexity, and handling of missing data, need to be considered. Further research is required to address these limitations and benchmark the approach against state-of-the-art techniques. The proposed hybrid approach contributes to the field of dataset classification by offering an effective and interpretable methodology for improved classification performance and actionable insights in real-world applications