最简单随机游走算法在障碍期权定价中的应用

M. Krivko, M. Tretyakov
{"title":"最简单随机游走算法在障碍期权定价中的应用","authors":"M. Krivko, M. Tretyakov","doi":"10.1142/9789814436434_0011","DOIUrl":null,"url":null,"abstract":"We demonstrate effectiveness of the first-order algorithm from [Milstein, Tretyakov. Theory Prob. Appl. 47 (2002), 53-68] in application to barrier option pricing. The algorithm uses the weak Euler approximation far from barriers and a special construction motivated by linear interpolation of the price near barriers. It is easy to implement and is universal: it can be applied to various structures of the contracts including derivatives on multi-asset correlated underlyings and can deal with various type of barriers. In contrast to the Brownian bridge techniques currently commonly used for pricing barrier options, the algorithm tested here does not require knowledge of trigger probabilities nor their estimates. We illustrate this algorithm via pricing a barrier caplet, barrier trigger swap and barrier swaption.","PeriodicalId":197400,"journal":{"name":"arXiv: Computational Finance","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of simplest random walk algorithms for pricing barrier options\",\"authors\":\"M. Krivko, M. Tretyakov\",\"doi\":\"10.1142/9789814436434_0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate effectiveness of the first-order algorithm from [Milstein, Tretyakov. Theory Prob. Appl. 47 (2002), 53-68] in application to barrier option pricing. The algorithm uses the weak Euler approximation far from barriers and a special construction motivated by linear interpolation of the price near barriers. It is easy to implement and is universal: it can be applied to various structures of the contracts including derivatives on multi-asset correlated underlyings and can deal with various type of barriers. In contrast to the Brownian bridge techniques currently commonly used for pricing barrier options, the algorithm tested here does not require knowledge of trigger probabilities nor their estimates. We illustrate this algorithm via pricing a barrier caplet, barrier trigger swap and barrier swaption.\",\"PeriodicalId\":197400,\"journal\":{\"name\":\"arXiv: Computational Finance\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Computational Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9789814436434_0011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789814436434_0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了来自[Milstein, Tretyakov]的一阶算法的有效性。概率理论。应用理论与实践[j] .应用科学,47(2002),53-68。该算法采用了远离障碍的弱欧拉近似和一个由障碍附近价格的线性插值驱动的特殊构造。它易于实现且具有普遍性:它可以应用于各种合约结构,包括多资产相关基础上的衍生品,并且可以处理各种类型的障碍。与目前普遍用于定价障碍期权的布朗桥技术相比,这里测试的算法不需要了解触发概率及其估计。我们通过定价障碍帽、障碍触发交换和障碍交换来说明该算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of simplest random walk algorithms for pricing barrier options
We demonstrate effectiveness of the first-order algorithm from [Milstein, Tretyakov. Theory Prob. Appl. 47 (2002), 53-68] in application to barrier option pricing. The algorithm uses the weak Euler approximation far from barriers and a special construction motivated by linear interpolation of the price near barriers. It is easy to implement and is universal: it can be applied to various structures of the contracts including derivatives on multi-asset correlated underlyings and can deal with various type of barriers. In contrast to the Brownian bridge techniques currently commonly used for pricing barrier options, the algorithm tested here does not require knowledge of trigger probabilities nor their estimates. We illustrate this algorithm via pricing a barrier caplet, barrier trigger swap and barrier swaption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信