考虑风能不确定性的电网SVC优化配置

Numan Khan, R. Sirjani
{"title":"考虑风能不确定性的电网SVC优化配置","authors":"Numan Khan, R. Sirjani","doi":"10.1109/ICEEE52452.2021.9415951","DOIUrl":null,"url":null,"abstract":"Herein, we determine the optimal configuration (location and size) of a static Var compensator (SVC) considering the intermittent nature of wind power in the transmission system. A probabilistic load flow (PLF) integrated using a five-point estimation method was used to model the wind power uncertainties by discretizing wind power distribution into five discrete points. Consolidating the PLF using a multi-objective non-dominated sorting genetic algorithm (NSGA-II), the location and size of an SVC can be optimally allocated considering wind power uncertainties. This method aims to minimise system operation cost, power loss reduction, and voltage profile enhancement. To demonstrate the viability of the applied method, we validated it using the IEEE 30 bus system. Simulation outcomes demonstrate the viability of the applied method in minimizing different objective functions under the unpredictable nature of wind power.","PeriodicalId":429645,"journal":{"name":"2021 8th International Conference on Electrical and Electronics Engineering (ICEEE)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Allocation of SVC in Power Networks Considering Wind Energy Uncertainty\",\"authors\":\"Numan Khan, R. Sirjani\",\"doi\":\"10.1109/ICEEE52452.2021.9415951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Herein, we determine the optimal configuration (location and size) of a static Var compensator (SVC) considering the intermittent nature of wind power in the transmission system. A probabilistic load flow (PLF) integrated using a five-point estimation method was used to model the wind power uncertainties by discretizing wind power distribution into five discrete points. Consolidating the PLF using a multi-objective non-dominated sorting genetic algorithm (NSGA-II), the location and size of an SVC can be optimally allocated considering wind power uncertainties. This method aims to minimise system operation cost, power loss reduction, and voltage profile enhancement. To demonstrate the viability of the applied method, we validated it using the IEEE 30 bus system. Simulation outcomes demonstrate the viability of the applied method in minimizing different objective functions under the unpredictable nature of wind power.\",\"PeriodicalId\":429645,\"journal\":{\"name\":\"2021 8th International Conference on Electrical and Electronics Engineering (ICEEE)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 8th International Conference on Electrical and Electronics Engineering (ICEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEE52452.2021.9415951\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 8th International Conference on Electrical and Electronics Engineering (ICEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE52452.2021.9415951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑风电在输电系统中的间歇性特性,确定了静态无功补偿器(SVC)的最佳配置(位置和大小)。将风电功率分布离散为5个离散点,采用5点估计方法集成概率负荷流(PLF),对风电的不确定性进行建模。利用多目标非支配排序遗传算法(NSGA-II)对PLF进行整合,可以在考虑风电不确定性的情况下对SVC的位置和规模进行优化配置。该方法旨在最大限度地降低系统运行成本,减少功率损耗,并提高电压分布。为了证明应用方法的可行性,我们使用IEEE 30总线系统对其进行了验证。仿真结果验证了该方法在风电不可预测特性下最小化不同目标函数的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Allocation of SVC in Power Networks Considering Wind Energy Uncertainty
Herein, we determine the optimal configuration (location and size) of a static Var compensator (SVC) considering the intermittent nature of wind power in the transmission system. A probabilistic load flow (PLF) integrated using a five-point estimation method was used to model the wind power uncertainties by discretizing wind power distribution into five discrete points. Consolidating the PLF using a multi-objective non-dominated sorting genetic algorithm (NSGA-II), the location and size of an SVC can be optimally allocated considering wind power uncertainties. This method aims to minimise system operation cost, power loss reduction, and voltage profile enhancement. To demonstrate the viability of the applied method, we validated it using the IEEE 30 bus system. Simulation outcomes demonstrate the viability of the applied method in minimizing different objective functions under the unpredictable nature of wind power.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信