{"title":"基于粒子群优化的BPNN的风力发电机组选择与综合评价","authors":"Wei Sun, Zhipeng Xu","doi":"10.1504/IJADS.2017.10006786","DOIUrl":null,"url":null,"abstract":"With the development of the electric power system in China, wind power, as a clean energy, can be utilised to optimise the structure of electrical energy. By reducing the emission of pollutants, it will benefit the sustainable development of the national economy and environment. In wind power projects, scientific and rational choices for the wind turbine generator in actual wind farm are critical since it is directly related to the economic benefits of wind power projects. By analysing the status of current wind power capacity at the scale of the globe and China, wind power is projected to play an increasingly important role in the future. On this basis, we developed the comprehensive evaluation system of wind turbine generator selection and established a comprehensive evaluation model based on BP neural network which was optimised by particle swarm. A real example was employed to verify the validity of the proposed method, thus can provide guideline of the evaluation of the wind turbine generators selection in wind farms.","PeriodicalId":216414,"journal":{"name":"Int. J. Appl. Decis. Sci.","volume":"175 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Wind turbine generator selection and comprehensive evaluation based on BPNN optimised by PSO\",\"authors\":\"Wei Sun, Zhipeng Xu\",\"doi\":\"10.1504/IJADS.2017.10006786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of the electric power system in China, wind power, as a clean energy, can be utilised to optimise the structure of electrical energy. By reducing the emission of pollutants, it will benefit the sustainable development of the national economy and environment. In wind power projects, scientific and rational choices for the wind turbine generator in actual wind farm are critical since it is directly related to the economic benefits of wind power projects. By analysing the status of current wind power capacity at the scale of the globe and China, wind power is projected to play an increasingly important role in the future. On this basis, we developed the comprehensive evaluation system of wind turbine generator selection and established a comprehensive evaluation model based on BP neural network which was optimised by particle swarm. A real example was employed to verify the validity of the proposed method, thus can provide guideline of the evaluation of the wind turbine generators selection in wind farms.\",\"PeriodicalId\":216414,\"journal\":{\"name\":\"Int. J. Appl. Decis. Sci.\",\"volume\":\"175 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Appl. Decis. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJADS.2017.10006786\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Appl. Decis. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJADS.2017.10006786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Wind turbine generator selection and comprehensive evaluation based on BPNN optimised by PSO
With the development of the electric power system in China, wind power, as a clean energy, can be utilised to optimise the structure of electrical energy. By reducing the emission of pollutants, it will benefit the sustainable development of the national economy and environment. In wind power projects, scientific and rational choices for the wind turbine generator in actual wind farm are critical since it is directly related to the economic benefits of wind power projects. By analysing the status of current wind power capacity at the scale of the globe and China, wind power is projected to play an increasingly important role in the future. On this basis, we developed the comprehensive evaluation system of wind turbine generator selection and established a comprehensive evaluation model based on BP neural network which was optimised by particle swarm. A real example was employed to verify the validity of the proposed method, thus can provide guideline of the evaluation of the wind turbine generators selection in wind farms.