Katsuaki Tanaka, Di Zhang, Sho Inoue, R. Kasai, Hiroya Yokoyama, Koki Shindo, Ko Matsuhiro, Shigeaki Marumoto, H. Ishii, A. Takanishi
{"title":"设计了一种小型移动机器人,该机器人具有车轮和多转子混合运动机构","authors":"Katsuaki Tanaka, Di Zhang, Sho Inoue, R. Kasai, Hiroya Yokoyama, Koki Shindo, Ko Matsuhiro, Shigeaki Marumoto, H. Ishii, A. Takanishi","doi":"10.1109/ICMA.2017.8016039","DOIUrl":null,"url":null,"abstract":"We developed a small mobile robot in response to the demands in the disaster area. A hybrid locomotion mechanism of wheels and multi-rotors are proposed to realize both high locomotion performance and long-term operation. The wheels allow to highly maneuverable move in a narrow space, and the multi-rotors allow to move to a higher position. The objective of this study is to design the locomotion mechanism and develop a platform for confirming the basic locomotion performance. We attached a wheel mechanism into the assembled hobby drone and embedded an electrical system to operate the robot. The wheels also contribute to protect the multi-rotors from obstacles such as rubble. A stabilizer was proposed to stabilize the robot during running with wheels and designed to allow recover from flipping state. The significant of this work is not only improving the locomotion performance of the drone, but also increase the operating time, this leads various uses at disaster sites. In this paper, the details of the locomotion mechanism and some experimental results using the developed platform are shown.","PeriodicalId":124642,"journal":{"name":"2017 IEEE International Conference on Mechatronics and Automation (ICMA)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A design of a small mobile robot with a hybrid locomotion mechanism of wheels and multi-rotors\",\"authors\":\"Katsuaki Tanaka, Di Zhang, Sho Inoue, R. Kasai, Hiroya Yokoyama, Koki Shindo, Ko Matsuhiro, Shigeaki Marumoto, H. Ishii, A. Takanishi\",\"doi\":\"10.1109/ICMA.2017.8016039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We developed a small mobile robot in response to the demands in the disaster area. A hybrid locomotion mechanism of wheels and multi-rotors are proposed to realize both high locomotion performance and long-term operation. The wheels allow to highly maneuverable move in a narrow space, and the multi-rotors allow to move to a higher position. The objective of this study is to design the locomotion mechanism and develop a platform for confirming the basic locomotion performance. We attached a wheel mechanism into the assembled hobby drone and embedded an electrical system to operate the robot. The wheels also contribute to protect the multi-rotors from obstacles such as rubble. A stabilizer was proposed to stabilize the robot during running with wheels and designed to allow recover from flipping state. The significant of this work is not only improving the locomotion performance of the drone, but also increase the operating time, this leads various uses at disaster sites. In this paper, the details of the locomotion mechanism and some experimental results using the developed platform are shown.\",\"PeriodicalId\":124642,\"journal\":{\"name\":\"2017 IEEE International Conference on Mechatronics and Automation (ICMA)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Mechatronics and Automation (ICMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMA.2017.8016039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Mechatronics and Automation (ICMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA.2017.8016039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A design of a small mobile robot with a hybrid locomotion mechanism of wheels and multi-rotors
We developed a small mobile robot in response to the demands in the disaster area. A hybrid locomotion mechanism of wheels and multi-rotors are proposed to realize both high locomotion performance and long-term operation. The wheels allow to highly maneuverable move in a narrow space, and the multi-rotors allow to move to a higher position. The objective of this study is to design the locomotion mechanism and develop a platform for confirming the basic locomotion performance. We attached a wheel mechanism into the assembled hobby drone and embedded an electrical system to operate the robot. The wheels also contribute to protect the multi-rotors from obstacles such as rubble. A stabilizer was proposed to stabilize the robot during running with wheels and designed to allow recover from flipping state. The significant of this work is not only improving the locomotion performance of the drone, but also increase the operating time, this leads various uses at disaster sites. In this paper, the details of the locomotion mechanism and some experimental results using the developed platform are shown.