{"title":"混合系统的相关衰减和大偏差","authors":"R. Artuso, C. Manchein, Matteo Sala","doi":"10.1142/9789813202740_0004","DOIUrl":null,"url":null,"abstract":"We consider low--dimensional dynamical systems with a mixed phase space and discuss the typical appearance of slow, polynomial decay of correlations: in particular we emphasize how this mixing rate is related to large deviations properties.","PeriodicalId":166772,"journal":{"name":"arXiv: Chaotic Dynamics","volume":"147 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Correlation decay and large deviations for mixed systems\",\"authors\":\"R. Artuso, C. Manchein, Matteo Sala\",\"doi\":\"10.1142/9789813202740_0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider low--dimensional dynamical systems with a mixed phase space and discuss the typical appearance of slow, polynomial decay of correlations: in particular we emphasize how this mixing rate is related to large deviations properties.\",\"PeriodicalId\":166772,\"journal\":{\"name\":\"arXiv: Chaotic Dynamics\",\"volume\":\"147 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Chaotic Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9789813202740_0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789813202740_0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Correlation decay and large deviations for mixed systems
We consider low--dimensional dynamical systems with a mixed phase space and discuss the typical appearance of slow, polynomial decay of correlations: in particular we emphasize how this mixing rate is related to large deviations properties.