面向物联网的微动目标IPv6防御设计

K. Zeitz, M. Cantrell, R. Marchany, J. Tront
{"title":"面向物联网的微动目标IPv6防御设计","authors":"K. Zeitz, M. Cantrell, R. Marchany, J. Tront","doi":"10.1145/3054977.3054997","DOIUrl":null,"url":null,"abstract":"As the use of low-power and low resource embedded devices continues to increase dramatically with the introduction of new Internet of Things (IoT) devices, security techniques are necessary which are compatible with these devices. This research advances the knowledge in the area of cyber security for the IoT through the exploration of a moving target defense to apply for limiting the time attackers may conduct reconnaissance on embedded systems while considering the challenges presented from IoT devices such as resource and performance constraints. We introduce the design and optimizations for a Micro-Moving Target IPv6 Defense including a description of the modes of operation, needed protocols, and use of lightweight hash algorithms. We also detail the testing and validation possibilities including a Cooja simulation configuration, and describe the direction to further enhance and validate the security technique through large scale simulations and hardware testing followed by providing information on other future considerations.","PeriodicalId":179120,"journal":{"name":"2017 IEEE/ACM Second International Conference on Internet-of-Things Design and Implementation (IoTDI)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Designing a Micro-moving Target IPv6 Defense for the Internet of Things\",\"authors\":\"K. Zeitz, M. Cantrell, R. Marchany, J. Tront\",\"doi\":\"10.1145/3054977.3054997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the use of low-power and low resource embedded devices continues to increase dramatically with the introduction of new Internet of Things (IoT) devices, security techniques are necessary which are compatible with these devices. This research advances the knowledge in the area of cyber security for the IoT through the exploration of a moving target defense to apply for limiting the time attackers may conduct reconnaissance on embedded systems while considering the challenges presented from IoT devices such as resource and performance constraints. We introduce the design and optimizations for a Micro-Moving Target IPv6 Defense including a description of the modes of operation, needed protocols, and use of lightweight hash algorithms. We also detail the testing and validation possibilities including a Cooja simulation configuration, and describe the direction to further enhance and validate the security technique through large scale simulations and hardware testing followed by providing information on other future considerations.\",\"PeriodicalId\":179120,\"journal\":{\"name\":\"2017 IEEE/ACM Second International Conference on Internet-of-Things Design and Implementation (IoTDI)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE/ACM Second International Conference on Internet-of-Things Design and Implementation (IoTDI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3054977.3054997\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACM Second International Conference on Internet-of-Things Design and Implementation (IoTDI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3054977.3054997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

随着新的物联网(IoT)设备的引入,低功耗和低资源嵌入式设备的使用继续急剧增加,与这些设备兼容的安全技术是必要的。本研究通过探索移动目标防御来推进物联网网络安全领域的知识,以限制攻击者对嵌入式系统进行侦察的时间,同时考虑到物联网设备带来的挑战,如资源和性能限制。我们介绍了微移动目标IPv6防御的设计和优化,包括操作模式的描述,所需的协议,以及轻量级哈希算法的使用。我们还详细介绍了测试和验证的可能性,包括Cooja模拟配置,并描述了通过大规模模拟和硬件测试进一步增强和验证安全技术的方向,随后提供了有关其他未来考虑事项的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing a Micro-moving Target IPv6 Defense for the Internet of Things
As the use of low-power and low resource embedded devices continues to increase dramatically with the introduction of new Internet of Things (IoT) devices, security techniques are necessary which are compatible with these devices. This research advances the knowledge in the area of cyber security for the IoT through the exploration of a moving target defense to apply for limiting the time attackers may conduct reconnaissance on embedded systems while considering the challenges presented from IoT devices such as resource and performance constraints. We introduce the design and optimizations for a Micro-Moving Target IPv6 Defense including a description of the modes of operation, needed protocols, and use of lightweight hash algorithms. We also detail the testing and validation possibilities including a Cooja simulation configuration, and describe the direction to further enhance and validate the security technique through large scale simulations and hardware testing followed by providing information on other future considerations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信