在纵向社交媒体数据中检测变化时刻和自杀风险水平的情感知情模型

Ulya Bayram, Lamia Benhiba
{"title":"在纵向社交媒体数据中检测变化时刻和自杀风险水平的情感知情模型","authors":"Ulya Bayram, Lamia Benhiba","doi":"10.18653/v1/2022.clpsych-1.20","DOIUrl":null,"url":null,"abstract":"In this shared task, we focus on detecting mental health signals in Reddit users’ posts through two main challenges: A) capturing mood changes (anomalies) from the longitudinal set of posts (called timelines), and B) assessing the users’ suicide risk-levels. Our approaches leverage emotion recognition on linguistic content by computing emotion/sentiment scores using pre-trained BERTs on users’ posts and feeding them to machine learning models, including XGBoost, Bi-LSTM, and logistic regression. For Task-A, we detect longitudinal anomalies using a sequence-to-sequence (seq2seq) autoencoder and capture regions of mood deviations. For Task-B, our two models utilize the BERT emotion/sentiment scores. The first computes emotion bandwidths and merges them with n-gram features, and employs logistic regression to detect users’ suicide risk levels. The second model predicts suicide risk on the timeline level using a Bi-LSTM on Task-A results and sentiment scores. Our results outperformed most participating teams and ranked in the top three in Task-A. In Task-B, our methods surpass all others and return the best macro and micro F1 scores.","PeriodicalId":107109,"journal":{"name":"Proceedings of the Eighth Workshop on Computational Linguistics and Clinical Psychology","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Emotionally-Informed Models for Detecting Moments of Change and Suicide Risk Levels in Longitudinal Social Media Data\",\"authors\":\"Ulya Bayram, Lamia Benhiba\",\"doi\":\"10.18653/v1/2022.clpsych-1.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this shared task, we focus on detecting mental health signals in Reddit users’ posts through two main challenges: A) capturing mood changes (anomalies) from the longitudinal set of posts (called timelines), and B) assessing the users’ suicide risk-levels. Our approaches leverage emotion recognition on linguistic content by computing emotion/sentiment scores using pre-trained BERTs on users’ posts and feeding them to machine learning models, including XGBoost, Bi-LSTM, and logistic regression. For Task-A, we detect longitudinal anomalies using a sequence-to-sequence (seq2seq) autoencoder and capture regions of mood deviations. For Task-B, our two models utilize the BERT emotion/sentiment scores. The first computes emotion bandwidths and merges them with n-gram features, and employs logistic regression to detect users’ suicide risk levels. The second model predicts suicide risk on the timeline level using a Bi-LSTM on Task-A results and sentiment scores. Our results outperformed most participating teams and ranked in the top three in Task-A. In Task-B, our methods surpass all others and return the best macro and micro F1 scores.\",\"PeriodicalId\":107109,\"journal\":{\"name\":\"Proceedings of the Eighth Workshop on Computational Linguistics and Clinical Psychology\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Eighth Workshop on Computational Linguistics and Clinical Psychology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2022.clpsych-1.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eighth Workshop on Computational Linguistics and Clinical Psychology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.clpsych-1.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这个共同的任务中,我们主要通过两个主要挑战来检测Reddit用户帖子中的心理健康信号:A)从帖子的纵向集合(称为时间线)中捕捉情绪变化(异常),B)评估用户的自杀风险水平。我们的方法利用语言内容的情感识别,通过使用用户帖子上预训练的bert计算情感/情绪分数,并将其提供给机器学习模型,包括XGBoost、Bi-LSTM和逻辑回归。对于任务a,我们使用序列到序列(seq2seq)自动编码器检测纵向异常,并捕获情绪偏差区域。对于任务b,我们的两个模型使用BERT情绪/情绪得分。第一种方法是计算情绪带宽并将其与n-gram特征合并,并使用逻辑回归来检测用户的自杀风险水平。第二个模型使用任务a结果和情绪得分的Bi-LSTM来预测时间线水平上的自杀风险。我们的成绩超过了大多数参赛队伍,在Task-A中排名前三。在Task-B中,我们的方法超越了所有其他方法,并返回了最好的宏观和微观F1分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Emotionally-Informed Models for Detecting Moments of Change and Suicide Risk Levels in Longitudinal Social Media Data
In this shared task, we focus on detecting mental health signals in Reddit users’ posts through two main challenges: A) capturing mood changes (anomalies) from the longitudinal set of posts (called timelines), and B) assessing the users’ suicide risk-levels. Our approaches leverage emotion recognition on linguistic content by computing emotion/sentiment scores using pre-trained BERTs on users’ posts and feeding them to machine learning models, including XGBoost, Bi-LSTM, and logistic regression. For Task-A, we detect longitudinal anomalies using a sequence-to-sequence (seq2seq) autoencoder and capture regions of mood deviations. For Task-B, our two models utilize the BERT emotion/sentiment scores. The first computes emotion bandwidths and merges them with n-gram features, and employs logistic regression to detect users’ suicide risk levels. The second model predicts suicide risk on the timeline level using a Bi-LSTM on Task-A results and sentiment scores. Our results outperformed most participating teams and ranked in the top three in Task-A. In Task-B, our methods surpass all others and return the best macro and micro F1 scores.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信