{"title":"减少闭源软件中的漏洞","authors":"Zhen Huang, Gang Tan, Xiaowei Yu","doi":"10.4108/eetss.v8i30.253","DOIUrl":null,"url":null,"abstract":"Many techniques have been proposed to harden programs with protection mechanisms to defend against vulnerability exploits. Unfortunately the vast majority of them cannot be applied to closed source software because they require access to program source code. This paper presents our work on automatically hardening binary code with security workarounds, a protection mechanism that prevents vulnerabilities from being triggered by disabling vulnerable code. By working solely with binary code, our approach is applicable to closed source software. To automatically synthesize security workarounds, we develop binary program analysis techniques to identify existing error handling code in binary code, synthesize security workarounds in the form of binary code, and instrument security workarounds into binary programs. We designed and implemented a prototype or our approach for Windows and Linux binary programs. Our evaluation shows that our approach can apply security workarounds to an average of 69.3% of program code and the security workarounds successfully prevents exploits to trigger real-world vulnerabilities.","PeriodicalId":335727,"journal":{"name":"EAI Endorsed Trans. Security Safety","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitigating Vulnerabilities in Closed Source Software\",\"authors\":\"Zhen Huang, Gang Tan, Xiaowei Yu\",\"doi\":\"10.4108/eetss.v8i30.253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many techniques have been proposed to harden programs with protection mechanisms to defend against vulnerability exploits. Unfortunately the vast majority of them cannot be applied to closed source software because they require access to program source code. This paper presents our work on automatically hardening binary code with security workarounds, a protection mechanism that prevents vulnerabilities from being triggered by disabling vulnerable code. By working solely with binary code, our approach is applicable to closed source software. To automatically synthesize security workarounds, we develop binary program analysis techniques to identify existing error handling code in binary code, synthesize security workarounds in the form of binary code, and instrument security workarounds into binary programs. We designed and implemented a prototype or our approach for Windows and Linux binary programs. Our evaluation shows that our approach can apply security workarounds to an average of 69.3% of program code and the security workarounds successfully prevents exploits to trigger real-world vulnerabilities.\",\"PeriodicalId\":335727,\"journal\":{\"name\":\"EAI Endorsed Trans. Security Safety\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EAI Endorsed Trans. Security Safety\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/eetss.v8i30.253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Trans. Security Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eetss.v8i30.253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mitigating Vulnerabilities in Closed Source Software
Many techniques have been proposed to harden programs with protection mechanisms to defend against vulnerability exploits. Unfortunately the vast majority of them cannot be applied to closed source software because they require access to program source code. This paper presents our work on automatically hardening binary code with security workarounds, a protection mechanism that prevents vulnerabilities from being triggered by disabling vulnerable code. By working solely with binary code, our approach is applicable to closed source software. To automatically synthesize security workarounds, we develop binary program analysis techniques to identify existing error handling code in binary code, synthesize security workarounds in the form of binary code, and instrument security workarounds into binary programs. We designed and implemented a prototype or our approach for Windows and Linux binary programs. Our evaluation shows that our approach can apply security workarounds to an average of 69.3% of program code and the security workarounds successfully prevents exploits to trigger real-world vulnerabilities.